the author explain in any way the difference between his own result and that of Maxwell.
[The method followed by Maxwell is liable to be vitiated to a very sensible degree by small errors of level of the movable disks, especially when they are closest to the fixed disks. The final adjustment is stated to have been that of the fixed disks, and no special precantions seem to have been taken to secure the exact horizontality of the movable disks. By a calculation founded on the equations of motion of a viscons fluid, I find that at the closest distance (about the onesixth of an inch) at which the fixed and movable disks were set, an error of level of only $l^{\circ} 8^{\prime}$ would suffice to make the internal friction appear 8 per cent. too high.

In Mr. Tomlinson's reductions no allowance has at present been made for the effect of the rotation of the spheres or cylinders about their own axes, which is not quite insensible, as it would be in the case of a ball pendulum. The introduction of a correction on this account would slightly diminish the values resulting from the experiments, especially in the case of the sphere, where it would come to aboat 4 per cent.-G. G. S.]

January 21, 1886.
Professor STOKES, D.C.L., President, in the Chair.
The presents received were laid on the table, and thanks ordered for them.

The following Papers were read :-

I. "Family Likeness iu Stature." By Franois Galton, F.R.S. With an Appendix by J. D. Hamilton Diokson, Fellow and Tutor of St. Peter's College, Cambridge. Received January 1, 1886.

I propose to express by formulæ the relation that subsists between the statures of specified men and those of their kinsmen in any given degree, and to explain the processes through which family peculiarities of stature gradually diminish, until in every remote degree of kinship the group of kinsmen becomes undistinguishable from a group selected out of the general population at random. I shall determine the constants in my formulm referring to kinship with a useful
degree of precision. These constants may provisionally and with some reservation be held applicable to other human peculiarities than stature, while the formulm themselves are, I presume, applicable to every one-dimensioned faculty that all men possess in some degree, bat that different men possess in different degrees.

I selected stature for the subject of this inquiry, for reasons fully set forth in two recent publications,* which dealt with one small portion of the ground covered by the present memoir, and from which it will be convenient that I should make as I proceed occasional short extracts, in order to complete the present argument and to sare cross-reference. The reasons that combine to render stature an excellent sabject for hereditary inquiry are, briefly, the ease and frequency of its measurement, its constancy during adult life, its inconsiderable influence on the death-rate, its dependence on a multiplicity of separate elements, and other points that I shall dwell on as I proceed, namely, the ease with which female statures are transmuted to their male equivalents, and so enabled to be treated on equal terms with male statures, the tendency of the parental statures to blend in inheritance, and the disregard of stature in marriage selection.

Stature-schemes.-It is an axiom of statistics that large samples taken out of the same population at random are statistically similar, and in such inquiries as these which do not aim at minute accuracy, they may be considered identical. Thas the statures in every group, say of 1000 male adults, when distributed in order of their magnitudes at equal distances apart and in a row, will form almost identical figures; it being only towards either end of the long row that irregularities will begin to show themselves. These are animportant in the presentinquiry and I disregard them. The Diagram S, fig. 1, shows the outline of such a group of statures. It is drawn to scale, each of the statures being supposed to have been represented by a vertical line of proportionate length, standing on a horizontal base, the lines being at equal distances apart, and the whole system being compressed into the space between two termini, which may be set at any convenient distance asunder. The vertical lines in the figare do not indicate these statares, but they are divisions, ten in number, between each of which 100 statare lines are compressed. The first and last stature will not toach the termini, bat will be removed from them by a half-interval. As it will be convenient to assign a name to this figure, I will call it a

* (1.) "Presidential Addreas to the Anthropological Section of the British Aseociation in 1885." (2.) "Regression towards Mediocrity in Hereditary Stature." "Journ. Anthrop. Institute," 1885, p. 246. The latter is a reprint of that portion of the former with which I am now concerned, together with some additional matter ; it contains tables and diagrams, and should be referred to in preference.

Fig. 1.

"stature-scheme." The numerous cases near mediocrity that differ little from one another, cause the middle portion of the apper boundary of the stature-scheme to assume a gentle slope, which increases rapidly towards either end, where the increasing rareness of more and more exceptional cases causes that boundary line to slope upwards, as an asymptote to one of the termini, and downwards as an asymptote to the other.

Now suppose that instead of compressing 1000 statures between the termini, I compressed 1000×1000, or a million of them, the stature-scheme would be unaltered, except that such small irregularities as might have been previously seen would become smoothed. The height of the middlemost or median stature-line would remain the same as before, aud so would the heights of the lines standing at each quarter, each tenth, and at every other proportionate distance between the termini. Or again, instead of arranging the lines in a single scheme, we might arrange them in a thousand schemes, which as we have seen, would be practically identical in shape, and we may place these schemes side by side, as is done in Z, fig. 1, forming a
"squadron" numbering 1000 statures each way, the whole standing upon a square base. Our squadron may be considered as made up of ranks (parallel to the plane of $z x$) as in Z, or of files (parallel to the plane of $z y$) as in A. The ranks, as we have seen, are all similar stature-schemes, the files are all rectangles which have the same breadths bat are of dissimilar heights.

It is now easy to give a general idea, to be developed as we proceed, of the way in which any large sample of a population gives rise to a groap of distant kinsmen in any given degree, who are statistically (in all respects excopt numbers) undistinguishable as regards their statares from themselves. I must suppose for convenience of explanation, that tall, short, and mediocre men are equally fertile (which is not, however, strictly the case, the tall being somewhat less fertile than the short*), and then on referring to fig. 2 , the

Fig. 2.

fortanes of the distant descendants of two of the rectangular files of squadron A will be seen traced.

As the number of kinsmen, in any remote degree we please to specify, of the men in each of the two files is about the same; I take 1000 of them in each case. Again, as the stature-schemes of those kinsmen are identical with those of equal numbers of men taken at random, as samples of the general population, it follows that they

- Oddly enough, the shortest couple on my list hare the largest family, namely sisteen children, of whom fuurteen were measured.
will be identical with one another. Every other rectangular file being similarly represented, a complete squadron Z of the kinsmen is produced. It is obvious, then, that the squadrons A and Z are identical, and as the ranks of Z have proceeded from the files of A, the result is that the two squadrons will stand at right angles to one another. The upper surface of A was carved in rank, but was horizontal in file; that of Z is curved in file, bat is horizontal in rank.

Kinsmen in near degrees are represented by squadrons of intermediate form. These will not have lost the whole of the carvature in rank of A , nor will they have acquired the whole of the curvature in file of Z. Consequently they will be carved moderately in both ways.* Also it will be found that the intersection of their sarfaces by the horizontal plane of median height forms in each case an approximately straight line that assumes different and increasing inclinations, in the successive squadrons of intermediate shape between \mathbf{A} and Z . These lines are indicated by straight lines on the squares below the squadrons in fig. 4, which represent the square bases upon which the squadrons stand.

I shall now show how these curves in rank and file should be treated. But before doing so, it is necessary to remark that female adult stature (I speak throughout of adults) may be safely transmated to its male equivalent by multiplying it by a constant constant, which as regards my data is 1.08 . After this has been done, the transmated female statures may be treated on equal terms with the male statures, and the word "men" or other mascaline term will include both sexes, unless otherwise stated distinctly. This procedure is adopted in the present memoir.

It is now generally recognised that the statures in every ordinary population are distributed in approximate conformity with what might have been inferred, if it were known that their variations were governed by such conditions as those upon which the exponential law of frequency of error is based. Therefore the apper boundary of the stature-scheme is approximately a curve (I call it an "ogive") that admits of mathematical expression. The abscissæ of the normal ogive (fig. 3) are values of the probability integral $\frac{1}{\sqrt{\pi}} \int_{0}^{t} e^{-t} d t$, and the ordinates are the corresponding values of t. These are given in column A of Table I. Column B contains the same values divided by $0 \cdot 477$, by which means they are expressed in units of the probable error. I find it convenient to call the ordinates to an ogive (drawn

[^0]Fig. 3.

from its axis) by the name of "deviates," and to describe either of those two symmetrical deviates of the normal ogive that stand at $\pm 25^{\circ}$ by the name of "quartile deviate," or, more briefly, " quartile." I also give this name to the mean length of the upper and lower quartile, in those ogives which are drawn from observed data, and which are not strictly symmetrical. The numerical value of the quartile is identical with that of the well-known but here inappropriate term of " probable error."

Construction of Stature-Schemes and of Ogives from Observations.The method of drawing an ogive from observations of stature is as follows. The observations (see Tables III, IV, and V, and compare with VI and VII) are sorted into grades, such as " . . . cases of 60 inches and under 61," ". . . cases of 61 inches and under 62," \&c. If we are constructing a stature-scheme, or desire to obtain the median value of the series, we have to consider these values of inches, but in constructing no more than an ogive, which is only the upper boundary of a stature-scheme, it suffices to consider them as successive grades of 1 inch each, and I reckon the first grade not as 0 , but as 1 . This has been done in column A, Table VI, for the sake of treating different groups on a uniform plan. The number of cases in these grades are then summed from the beginning, and the sum, up to each grade inclusive, is written down, as shown
in column B in Table VI. The percentage values of these, taking the total number of observations as 100 , are written in column C. A series is there obtained which shows how many per cent. of the statures fall short of the parting value that separates each pair of adjacent grades. Thus if n per cent. of the statures fall within the first r grades, that is to say, are less than the value of the r th parting line, then $100-n$ per cent. of them will exceed that value. Consequently, if the observations are read off and recorded to the atmost nicety, r will be the value of the ordinate representing the stature which has to be erected on a base line at n per cent. of its length from one of its ends. In short, a base line of any convenient length has to be divided into 100 parts, and an ordinate of a length proportionate to r erected at the division n. As observations are never read off and recorded with perfect accuracy, a correction has here to be applied according to the circumstances of the particular case, whenever we are drawing a stature-scheme, and not merely an ogive. If the records are kept to the nearest m th part of an inch, the phrase "exceeding r inches" would really mean exceeding $r-1 / m$ inches." This then is the true parting value corresponding to the nominal r. In drawing ogives, and not statureschemes, this correction may of course be disregarded. Having erected ordinates corresponding to each value of r, their tops are connected by straight lines forming a polygonal boundary that approximates to the curvature of an ogive, and would become one if it were corrected with a free hand, or otherwise smoothed. The centre of the ogive lies at the intersection of the curve with the ordinate drawn from the base at the fiftieth division, and the horizontal axis of the ogive runs through that point of intersection (see fig. 3).

A half-ogive, whose ordinates are the mean lengths of the symmetrically disposed ordinates of the complete ogive, is constructed on the same general principles, but more simply, because the base from which it is plotted coincides with the axis of the ogive, and the graduations run alike, viz., from 0° to 50°.

In Table VII, the entries in the first lines of each of the three groups it contains, are the lengthis of the ordinates that have been measured from the bases of ogives constructed from the data in Table VI. The abscissw corresponding to the measured ordinates, are in every case the same fractional lengths of the bases. The entries in the second lines are the differences between these several ordinates and the median ordinate; they are, therefore, the deviates. The entries in the third lines are the negative deviates written under the corresponding positive ones. The entries in the fourth lines are the means of the values of the positive and negative deviates, disregarding their signs.

Comparison of Ogives.-The ogive being drawn according to the
observations, its axis is divided into 100 parts, the fiftieth division being reckoned as 0°, then the deviates standing at the \pm graduations of $10^{\circ}, 20^{\circ}, 25^{\circ}, 30^{\circ}, 40^{\circ}$, and 45° are measured. The mean of each pair of lengths, not regarding signs, has then to be divided by the mean lengths of the deviates at $\pm 25^{\circ}$, that is by the quartile deviate, and so is made to yield a series that is directly comparable with column B in Table I. The closeness with which it conforms to that standard series is the test of the closeness with which the observations conform to the law of frequency of error.

Table II effects this comparison for all the series that I have to deal with in the present paper. The values are entirely unsmoothed, except in two named instances, being taken from measurements made to the above-mentioned polygonal boundary. I thought it best to give these interpolated values in this, their rudest form, leaving it to be understood that with perfectly legitimate correction the accordance would become still closer. I do not carry the comparison beyond 45°, partly because my cases are not numerous enough to admit of a fair comparison being made, and chiefly because I am well aware that conformity is not to be expected towards the end of any series. I am content to deal with nine-tenths of the observations, namely, those between 0° and 45°, and to pay little heed to the remaining tenth, between 45° and 50°. It will be seen that the conformity of more than one half of each series is closer than to the first decimal place, and that in absolnte measurement it is closer than to one-tenth of an inch.

Arithmetic and Geometric Means.-I use throughout this inquiry the ordinary law of frequency of error, which being based on the assumption of entire ignorance of the conditions of variability, necessarily proceeds on the hypothesis that plus and minus deviations of equal amounts are equally probable. In the present subject of discussion our ignorance is not so complete; there is good reason to suppose that plus and minus deviations, of which the probability is equal, are so connected together that the ratio between the lower observed measurement and the trath is equal to that between the truth and the upper observed measurement. My reasons for this were explained some years ago, and were accompanied by a memoir by Mr. Donald Macalister, showing how the law of frequency of error would be modified if based on the geometric, instead of on the arithmetic mean.* Though in the present instance the former process is undoabtedly the more correct of the two, the smallness of the error here introduced by asing the well known law is so insignificant that it is not worth regarding. Thus the mean stature of the population is about 68.3 inches, and the quartile of the stature-scheme (the probable error) is 1.7 inch, or only about one-fortieth of its amount, and the * "Proc. Roy. Soc.," vol. 29 (1879), pp. 365, 367.
difference between $40^{2} / 39$ and 41 is that between about 41.025 and $41 \cdot 000$, or only about 6 per thousand.

Regression.-It is a universal rule that the unknown kinsman in any degree of any specified man, is probably more mediocre than he. Let the relationship be what it may, it is safe to wager that the unknown kinsman of a person whose stature is $68 \frac{1}{4} \pm x$ inches, is of some height $68 \frac{1}{4} \pm x^{\prime}$ inches, where x^{\prime} is less than x. The reason of this can be shown to be due to the combined effect of two canses: (1) the statistical constancy during successive generations of the statures of the same population who live under, generally speaking, uniform conditions; (2) to the reasonable presumption that a sample of the original population and a sample of their kinsmen in any specified degree are statistically similar in the distribution of their statures. To fix the ideas, let us take an example, namely, that of the relation between men and their nepbews:-(a.) A sample of men, and a sample of the nephews of those men, are presumed to be statistically alike in stature, that is to say, their mean heights and their quartile deviates of height will be of the same value. I will call the value of this quartile p. (b.) Each family of nephews affords a series of statures that are distributed above and below the common mean of them. They are deviations from a central family valuie, or, as we may phrase it, from a nepotal centre, and it will be found as we proceed (it results from what appears in Tables III, IV, and V) that these deviations are in conformity with the law of error, and that the quartile values (probable errors) of these systems of deviations, which we will call f, are practically uniform, whatever the value of the central nepotal family stature may be. (c.) It will be found, as it is reasonable enough to anticipate, that the system of nepotal centres is distributed above and below the median stature of the population, in conformity with the law of frequency of error, and with a quartile value that we will call d. It follows from (a) that we possess data for an equation between p, f, and d, which, from a wellknown property of the law of error, assumes the form $d^{3}+f^{2}=p^{2}$. Now the unknown nephew is more likely to be of the stature of his nepotal centre than any other stature that can be named. But the system of statures of nepotal centres is more concentrated than that of the general population (d^{3} is less than p^{2}). That is to say, the unknown nephew is likely to be more mediocre than the known man of whom he is the nephew. What I shall have to show is expressed in fig. 4, where A and Z are side views of squadrons such as A and Z in fig. 2. [They are drawn shorter than the stature-schemes in fig. 1 , and therefore out of scale, to save space, which is an unimportant change, as it is only the variation in the ogives we are now concerned aboat.] Let m represent the level of mediocrity above the ground, $m+x$ and $m-x$ the heights of any two rectangular files in

Fig. 4.

the squadron of known men. We have seen that x becomes 0 in remote degrees of kinship, and I shall show that in intermediate degrees the value of x^{\prime} / x is constant for all statures in the same degree of kinship. This fraction is what I call the ratio of regression, and I designate it by w. Consequently the above formula becomes $0^{3} p^{2}+f^{2}=p^{2}$, which is universally applicable to all degrees of kinship between man and man, so long as the statistics of height of the popalation remain unchanged.
Hence in the squadrons, the curvature in rank is an ogive with the quartile value of $w p$, and in file with one having the quartile value of j, these two values being connected by the above formula. If the squadron is resolved into its elements, and those elements are redistribated into an ordinary stature-scheme, the quartile of the latter will be p.

A nother way of explaining the universal tendency to regression may he followed by showing that this tendency necessarily exists in each of the three primary relationships, fraternal, filial, and parental, and therefore in all derivative kinships. Fraternal regression may be ascribed to the compromise of two conflicting tendencies on the part of the anknown brother, the one to resemble the given man, the other to resemble the mean of the race, in other words to be mediocre. It will be seen that this compromise results in a probable fraternal stature that is expressed by the formulæ $\left(p^{2}-b^{2}\right) / p^{2}$, in which b is a constant as well as p, therefore the ratio of fraternal regression is also a constant. Filial regression is due (as I explained more fally than 1 need do here, in the publications alluded to in the second paragraph) to the concurrence of atavism with the tendency to resemble the parent. The remote ancestry in any mixed population resembles, as has been
already said, any sample taken at random out of that population, therefore their mean stature is mediocre; consequently the parental peouliarities are transmitted in a dilated amount. Parental regression is shown to be the necessary converse of filial regression by mathematical considerations, kindly investigated for me by Mr. Dickson, in the Appendir to this memoir in Problem 1. It is easy in a general way to see that this wonld be the case, bat I find it not easy otherwise to prove it. Still less would it be easy to prove the connexion between filial and mid-parental regression, which depend on considerations that are thoroughly investigated in the Appendix.

Data.-I will now describe the data from which I obtain my conclasions. They consist of two sets of practically independent observations, though they do in some small degree overlap.
(1.) Special observations. These concern variation in height among brothers. I circulated cards of inquiry among trusted correspondents, stating that I wanted records of the heights of brothers who are more than 24 and less than 60 years of age; not necessarily of all the brothers of the same family, bat of as many of them as conld be easily and accurately measured, the height of even two brothers being acceptable. If more than one set of brothers were entered on the same card, the entries were of course to be kept separate. The back of the card was ruled vertically in three parallel columns: (a) family name of each set of brothers; (b) order of birth in each set; (c) height, without shoes, in feet and inches. A place was reserved at the bottom for the name and address of the sender. The circle of inquiry widened, and I closed it when I had obtained returns of 295 families, containing in the aggregate 783 beothers.

I look upon these returns as quite as trustworthy as any sach returns are likely to be. They bear every internal test that I can apply to them very satisfactorily. They are commonly recorded to quarter and half inches.
(2.) R.F.F. data. By this abbreviation I refer to the Records of Family Faculties that I obtained in the summer of 1884, in reply to an offer of prizes. I have been able to extract from these the heights of 205 couples of parents, with those of an aggregate of 930 adult children of both sexes. I have transmuted all the female heights to their male equivalents, and have treated them thus transmated on equal terms with the measurement of males, except where otherwise expressed. These data have by no means the precision of the special observations. There is in many cases considerable doubt whether the measurements refer to the height with the shoes on or off; many entries are, I fear, only estimates, and the heights are commonly given only to the nearest inch. Still, speaking from a knowledge of many of the contributors, I am satisfied that a fair shnre of these
returns are undoubtedly careful and thoroughly trustworthy, so that I have reason to place confidence in mean results. They bear those internal tests that I apply to them better than I should have expected, and when taken in connexion with and checked by the special data, and used with statistical caution, they have proved very valuable to me.

I have discussed these materials in a great variety of ways to guard myself against rash conclusions, but I shall not present more than three primary tables, which contain sufficient materials for determining the constants of the formulm to be used.
The first of them (Table III) refers to the children of what I call "mid-parents" of varions statares. A mid-parent is the imaginary mean of the two parents, after the female measurements have been transmuted to their male equivalents, so that a mid-parent of 70 inches in height refers to a couple whose mean stature under the above reservations is 70 inches. I have given data in the "Journ. Anthrop. Inst." (loc. cit.) to show that we need not regard differences in stature between the parents, inasmuch as the distribation of heights among the children proves to be statistically the same, so long as the midparentages are alike, whether the two parents are the same or of different statares. This blending of paternal and maternal qualities in the stature of the offspring is one great advantage in selecting stature as a subject for the present inquiry.

General Population.-(1.) Its variability. The value of the quartile deviate in the population ogive (that is to say, the probable error) may be deduced from the bottom lines of any one of the three Tables III, IV, and V. Those in III and IV refer to data that are in part but by no means wholly the same, that of V refers to almost totally distinct data. The work is shown in Tables VI and VII; in the former the ordinates are calculated whence the ogive is drawn, in the latter I have given the values of the measured ordinates at the same points along its axis as those to which the ordinates given in Table I refer. The values of the quartile that I obtain in this way from the three cases are $1 \cdot 65,1 \cdot 7$, and $1 \cdot 7$. I should say that the more careful treatment that I originally adopted happened to make the first of these values also $1 \cdot 7$, so I have no hesitation in accepting $1 \cdot 7$ as the proper value of p for all my data.
(2.) Variability of system of mid-parents. I have published data in the memoir already alluded to, to show that marriage selection takes small account of stature, which is another great merit in stature as a subject for this inquiry. Some further proof of this may be got by comparing the variability of the system of mid-parents with that of the general population. If the married couples had paired together regardless of stature, their mean heights would be elements of a statistical system identical with one in which the pairs had been
selected at random. In this latter case the quartile value of the system of mid-parents would be $1 / \sqrt{ } 2 . p=1 \cdot 21$ inch. Now, I find the quartile of the series of the mid-parental system obtained from the two columns in Table III, that are headed respectively "Heights of the mid-parents" and "Total number of mid-parents," to be 1.19 inches,* which is an unexpectedly exact accordance.
(3.) Median Stature. I obtain the values $68 \cdot 2,68 \cdot 5,68 \cdot 4$, from the three series mentioned above, but the middle value, printed in italics, is a smoothed value. This is one of the only two smoothed values in the whole work, and has been justifiably corrected because the one ordinate that happens to accord closely with the median is out of harmony with all the rest of the carve. This fortuitous discrepancy amounts to more than 0.15 inch . It does not affect the quartile value, because neither the upper nor the lower quartile is touched, and, therefore, the half-interquartile remains unchanged. It must be recollected that the series in question refers to R.F.F. brothers, which are a somewhat conditioned selection from the general R.F.F. population, and could not be expected to afford as regular an ogive as that made from observations of men selected from the population at hazard. It is undoubtedly in this group that the least accuracy was to have been expected.

Mean Ratios of Regression in the Primary Degrees of Kinship.-(1.) From the stature of mid-parents of the same height, to the mean of the statures of all their children. I have already (loc. cit.) published the conclusions to which I arrived about this, but it is necessary to enter here into detail. The data are contained in Table III, where each line exhibits the distribution of stature among the children of all the mid-parents in my list, who were of the stature that forms the argument to that line. The median stature in each successive line is the mean stature of all the children, and is given at the side in the column headed "Medians." Their values are graphically represented in fig. 5. It will be there seen that these value are disposed abont a straight line. If the median statures of the children had been the same as those of their mid-parents this line would have accorded with the line AB , which, from the construction of the table, is inclined at an angle of 45° to the line "Mean Stature of Population," which represents the level of mediocrity. However, it does not do this, bat its position is inclined at a smaller angle, θ, such that

$$
\tan \theta: \tan 45:: 2: 3
$$

This gives us the ratio of regression ($=w$) in the present case; and, therefore, in the notation I adopt $w=\frac{9}{3}$.
(2.) From the stature of men of the same height, to the mean of the statures of all their children. We have just seen that when both

[^1]Figs. 5 and 6.

parents have a deviate of $\pm x$, the mean of the deviates of all of their family centres will be $\pm \frac{2}{3} x$. It follows that if one parent only has that deviate $\pm x$, and if the stature of the other parent is unknown, and, therefore, on the average, mediocre, the mean of the statures of their children will be half the above amount, or $\frac{1}{3}$. I cannot test this conclusion very satisfactorily by direct observation, for my data are barely numerons enough to enable me to deal even with the midparentages. They are consequently insufficient to deal with a question involving the additional large uncertainty of the stature of one of the parents. I have, however, tabulated the data, bat do not think it worth while to give them. They yield a ratio of regression of $0 \cdot 40$ instead of 0.33 as above. I disregard it, and adopt the latter, namely, $10=\frac{1}{3}$.
(3). From the stature of men of the same height to the mean of the statures of their mid-parents. By treating the vertical columns of Table III in the same way as we have just dealt with the horizontal lines, we obtain results of the same general form as in the last paragraph but one, though of different values.

Taking the height of a group of men of the same stature (viz., the "Adult Children") as given in the line that forms the heading to the table, we find the median stature of all their mid-parents, whence I deduce in this case $w=\frac{1}{3}$. The apparent paradox that the same table should give results by no means converse in their values for converse degrees of kinship, will be more conveniently examined later on.
(4.) From the stature of men of the same height to the mean of the statares of all their brothers. In seeking for this I shall at first confine myself to the more accurate special data, reserving to the end a comparison between their results and those derived from the R.F.F. The entries in the column headed "medians" in Table V are
graphically represented in fig. 6, whence I deduce the value of $w=\frac{8}{3}$.

Variability of Statures of "Co-kinsmen" about their common mean Value.-By "co-kinsmen" I desire to express the group distribated in any one line of Tables III, IV, V, or of other tables constructed on a like principle. They are the kinsmen in a specified degree, not of a single person, but of a group of like persons, who probably differ both in ancestry and nurtare. For example, the persons to whom the entries opposite 68.5 in Table III refer are not brothers, bat they are what I call "eo-fraternals," or from another point of view, "co-filials," namely, the children of namerous mid-parentages, differing varionsly in their antecedents, and alike only in their personal statares.

Co-filial Variability.-It appears from Table III that the mean of the quartiles derived from the successive lines, and which I designate by f, is 1.5 inch ; also that the quartiles are of nearly the same value in all of the lines, allowance being made for statistical irregularities. A protraction on a large sheet of the individual observations in their several exact places, gave the result that the quartile was a trifle larger for the children of tall mid-parentages than for those of short ones. This justifies what was said some time back about the use of the geometric mean; it also justifies the neglect here of the method founded upon it, on the ground that it would lead to only an insignificant improvement in the results.

We have now obtained the values of the three constants in the general equation $w^{2} p^{2}+f^{2}=p^{2}$, when it is used to express the relation between mid-parentages and cofilials. Thus the quartile of the popalation being $p=1 \cdot 7$, it was shown both by observation and by calculation, that the quartile of the mid-parental system was $1 / \sqrt{ } 2 . p$ or $1 \cdot 21$. It was also shown that the ratio of regression in that case was $\frac{8}{3}$, consequently the general equation becomes $\left(\frac{8}{3} \times 1 \cdot 21\right)^{2}+(1 \cdot 5)^{2}=(1 \cdot 7)^{2}$, or $0 \cdot 64+2 \cdot 25=2 \cdot 89$, which is an exact accordance, satisfactorily cross-testing the various independent estimates.

Converse Ratios of Regression.-We are now sufficiently advanced to be able to examine more closely the apparent paradox that the ratio of regression from the stature of mid-parents of the same height to the mean of the statures of their sons should be $\frac{8}{3}$, while that of men of the same stature to the mean of the statures of their several mid-parents should be, not the numerical converse of this, but $\frac{1}{3}$. We may look upon the entries in Table III as the values of (vertical) ordinates in z to be erected upon it at the points where those entries lie, and which are specified by the arguments of "heights of midparents" written along the side, as values of ordinates in y, and of "heights of adult children" written along the top, as values of ordinates in x. The smoothed result would form a curred surface of frequency. I accordingly smoothed the table by writing at each
intersection of the lines that separated the vertical columns with those that separated the horizontal lines, the sums of the four adjacent entries. Then I drew lines with a free hand through all entries, or interpolations between entries, that were of the same value. These lines formed a concentric series of elliptical figures, passing through values of z that diminished; going outwards. Their common centre at which z was the greatest, and which therefore was the portion of maximum frequency, lay at the point where both x and y were of the same value of $68 \frac{1}{4}$ inches, that is, of the value of the mean stature of the population. The line in which the major axes of the ellipses lay was inclined nearer to the axis of x than that of y. It was evident from the construction that the median value of the entries, whether in each line or in each column of the table, must lie at the point where that line or column was touched by the projection of one of these ellipses. It was easy also to believe that the equation to the surface of frequency and the lines of loci of the above-mentioned points of contact, admitted of mathematical expression. Also that the problem to be solved might be expressed in a form that had no reference to heredity. In such a form I submitted it to Mr. J. Hamilton Dickson, who very kindly undertook its solution, which appears as an Appendix to this paper, and which helps in various ways to test and confirm the approximate and uncertain conclasions suggested by the statistical treatment of the observations themselves. I shall make frequent use of his mathematical results, both in respect to this problem and to another one (also given in the Appendix), in the course of my further remarks.

As regards the present sabject of the connexion between the regression in direct and in converse kinships, it appears that it wholly depends on the relation between the quartiles of the two series of "arguments," and is expressed by the formula $c^{2} w=p^{\circ} w^{\prime}$. In this case $c^{2}=(1 \cdot 21)^{2}=1 \cdot 46$, and $p^{2}=2 \cdot 89$; also $w=\frac{8}{3}$; therefore $w^{\prime}=\frac{1}{3}$ nearly.

It will be observed that in all cases of converse kinship, from man to man-as from man to brother, and conversely; from man to nephew, and conversely; from father to son, and conversely; $c=p$, therefore in these the ratio of regression is the same in the converse as in the direct kinship.

Brotherly Variability.-The size of human families is much too small to admit of the quartile of brotherly variability being determined in the same way as that of the popalation, namely, by finding the quartiles in single families, but there are four indirect ways of finding its value, which I will call b.
(1.) A collection of differences (see Table VIII) between the statures of individual brothers, in families of n brothers, and the mean of all the n statures in the same family, gives a quartile value, which I will
call d, whence b may be deduced as follows:-Suppose an exceedingly large family (theoretically infinitely large) of brothers; their quartile would be b. Then if we select from it, at random, numerons groups of n brothers in each, the means of the mid-deviates of the several groups would form a series whose quartile is $1 / \sqrt{ } n \times b$. Hence b is compounded of this value and of d; that is to say,

$$
b^{2}=d^{2}+1 / n \times b^{2} \quad \text { or } \quad b^{2}=\frac{n}{n-1} d^{2} .
$$

I treated in this way four groups of families, in which the values of n were 4, 5, 6, and 7 respectively, as shown in Table VIII, whence I obtained for b the four values of $1 \cdot 01,1 \cdot 01,1 \cdot 20$, and $1 \cdot 08$, whose mean is 1.07 .
(2.) Let c be the quartile of a series of brotherly centres whose quartile is unknown and has to be determined, and that the statures of the individual brothers diverge from their several family centres $\mathbf{C}_{1} \mathbf{C}_{2}$. ., with a quartile b, the whole group of brothers thus forming a sample of the ordinary population ; consequently $c^{2}=p^{2}-b^{2}$. Now in fig. 7, MS represents the deviate in stature of a group of like persons

Fig. 7.

who are not brothers, and MC represents the mean of the mid-deviates of their respective families of brothers. It can be shown (see Appendix, Problem 2) that if the position of c varies with respect to M with a quartile $=\sqrt{p^{2}-b^{2}}$, and if S varies with respect to c with a quartile $=b$, then, when S only is observed, the most probable value of CM is such that $\frac{\mathrm{CM}}{\mathrm{SM}}(=w)=\frac{p^{2}-b^{2}}{p^{2}}$,

$$
\text { or } b^{2}=p^{2}(1-v) .
$$

Substitating $1 \cdot 7$ for p, and $\frac{8}{3}$ for v,

$$
b=0.98 \text { inch. }
$$

(3.) It can also be shown (see Appendix, Problem 2) that the variability of particular mid-brotherly deviates, $\mathrm{C}_{1} \mathrm{C}_{2} \ldots$, about C , the
mean of all them, is such that its quartile $=\frac{c b}{\sqrt{\left(c^{2}+b^{2}\right)}}$. Now the distribntion of values in each line of Table ∇, whose quartile $=f$, is due to the combination of two variables. The one is the variability of $\mathrm{C}_{1} \mathrm{C}_{2} \ldots$, about C ; the other is the variability of the individual brothers in each family, about $\mathrm{C}_{1}, \mathrm{C}_{8}$, \&c., respectively. Therefore $f^{2}=\frac{c^{2} b^{2}}{c^{2}+b^{2}}+l^{2}$. Substituting for c^{2} its value $p^{2}-b^{2}$, we obtain

$$
b^{2}=p\left(p-\sqrt{ }\left(p^{2}-f^{2}\right)\right) .
$$

The observed value of f in Table V is $l \cdot 24$, whence we obtain $b=1 \cdot 10$.
(4.) Pairs of brothers may be taken at random, and the differences noted between their statures; then under the following reservation, as regards the differences to be taken, we should expect the observed quartile of the differences to be $=\sqrt{ } 2 \times b$. The reservation is, that only as many differences should be taken out of each family as are independent. A family of n brothers admits of $n . n-1 / 2$ possible pairs, bat no more than $n-1$ of these are independent and only these should be taken. I did not appreciate this necessity at first, and selected pairs of brothers on an arbitrary system, which had at all events the merit of not taking more than four pairs of differences from any family, however numerons. It was faulty in taking three differences instead of only two from a family of three, and four differences instead of only three from a family of four, and therefore giving an increased weight to those families, but in other respects the system was hardly objectionable. On the whole the introduced error would be so slight as scarcely to make it worth while now to go over the work again. By the system adopted I found a quartile value of $1 \cdot 55$, which divided by $\sqrt{ } 2$ gives $b=1 \cdot 10 \mathrm{inch}$.

Thas far we have dealt with the special data only. The less trustworthy R.F.F. give larger values of b. An epitome of all the results appears in the following table.

	Values of b obtained by different methods and from different data.	
	Specials.	R.F.F.
(1.) From families	1.07	
(2.) From 20 (Tables V and IV)	$0 \cdot 98$	$1 \cdot 31$
(3.) From f (Tables V and IV)	1-10	$1 \cdot 14$
(4.) From pairs of brothers		
Mean	1.06	

The R.F.F. results refer to brothers only and not to transmated sisters, except in method (2), where the paucity of the data compelled me to include them. I should point out that the data used in these four methods differ. In (1) I did not use families under four. In (2) and (3) I did not use large families. In (4) the method of selection was as we have seen, again different. This makes the accordance of the results still more gratifying. I gather from the above that we may securely consider the value of b to be less than $1 \cdot 10$, and allowing for some want of precision in the special data, the very convenient value of 1.0 inch may reasonably be adopted.
We are now able to deal completely with the distribation of statures in every degree of kinship of the kinsmen of those whose statures we know, bat whose ancestral statures we are ignorant of or do not take into account. We are, in short, able to construct tables on the form of III, IV, and V, for every degree of kinship, and to reconstruct those tables in a way that shall be free from irregularities. The fraternal relation as distinguished from the co-fraternal has also been clearly explained.

In constructing a table of the form of III, IV, and V, we first find the value of w for the degree of kinship in question, thence we deduce f by means of the general equation $w^{2} p^{2}+f^{3}=p^{2}$ (p is supposed to be known, or for the general purpose of comparing the relative nearness of different degrees of kinship as tested by family likeness in stature, it may be taken as anity). The entries to be made in the several lines are then to be calculated from the ordinary tables of the "probability integral."

As an example of the first part of the process, suppose we are constructing a table of men and their nephews. A nephew is the son of a brother, therefore in his case we have $w=\frac{1}{3} \times \frac{9}{3}=\frac{1}{9}$; and $f=p \sqrt{ }\left(1-w^{2}\right),=1 \cdot 66$.

Form of Data for calculating Tables of Distribation of Stature among Kinsmen.

From any group of persons of the same height, to their kinsmen as below.	Mean regression r.	Quartile of individual variability, $f\left(=p \times \sqrt{ }\left(1-w^{2}\right) .\right.$
Mid-parents	2/3	$1 \cdot 27$
Brothers	2/3	$1 \cdot 27$
Fathers or sons	1/3	$1 \cdot 60$
Uncles or nephews.	2/9	$1 \cdot 66$
Grandfathers or grandsons.	1/9	$1 \cdot 69$

Trustworthiness of the Constants.-There is difficulty in correcting the results obtained solely from the R.F.F. data, by help of the knowledge of their general inaccuracy as compared with the
special data. The reason is that this inaccuracy cannot be ascribed to an uncertainty of equal \pm amount in every entry, such as might be due to a doabt of "shoes off" or "shoes on." If it were so, the quartile deviate of the R.F.F. would be greater than that of the specials, whereas it proves to be the same. It is likely that the inaccaracy is a resalt of the uncertainty above mentioned, which would increase the value of the quartile deviate, combined with a tendency on the part of my correspondents to record mediam statures when they were in doubt, and which would reduce the quartile deviate. What the effect of all this might be on the value of w in Table 1V, which is a datum of primary importance, I am not prepared to sny, except that it cannot be great. While sincerely desirous of obtaining a revised value of w from new and more accurate data, the provisional value I have adopted may be accepted as quite accurate enough for the present.

Separate Contribution of each Ancestor to the Heritage of the Child.I here insert a short extract from my paper in the "Journ. Anthrop. Inst.," with slight revision, as this memoir would be incomplete withont it.

When we say that the mid-parent contributes two-thirds of his peculiarity of height to the offspring, it is supposed that nothing is known about the previous ancestor. But though nothing is known, something is implied, and this must be eliminated before we can learn what the parental bequest. pure and simple, may amount to. Let the deviate of the mid-parent be x (including the sign), then the im. plied deviate of the mid-grandparent will be $\frac{1}{3} x$, of the mid-ancestor in the next generation $\frac{1}{9} x$, and so on. Hence the sam of the deviates of all the mid-generations that contribate to the heritage of the offspring is $x\left(1+\frac{1}{3}+\frac{1}{6}+\& c\right.$. $)=x \frac{3}{2}$.

Do they contribate on equal terms, or otherwise? I have not sufficient data to gield a direct reply, and must, therefore, try the effects of limiting suppositions. First, suppose the generations to contribute in proportion to the values of their respective mid-deviates; then as an accumulation of ancestral deviates whose sum amounts to $x_{\frac{3}{2}}^{2}$, yields an effective heritage of only $x \frac{3}{3}$, it follows that each piece of heritable property must be reduced, as it were, by a succession tax, to $\frac{t}{9}$ of its original amount, because $\frac{3}{2} \times \frac{4}{9}=\frac{2}{3}$.

Another supposition is that of saccessive proportionate diminutions, the property being taxed afresh in each transmission to $1 / r$ of its amount, so that the effective heritage would be-

$$
x\left(\frac{1}{r}+\frac{1}{3 r^{2}}+\frac{1}{3^{2} r^{3}}+-\right)=x\left(\frac{3}{3 r-1}\right)
$$

and this must, as before, be equal to $x \frac{2}{3}$, whence $\frac{1}{r}=\frac{6}{11}$.

A third possible supposition of the mid-ancestral deviate in any one remote generation contributing more than would be done by an equal mid-parental deviate, is notorionsly incorrect. Thus the descendants of "pedigree wheat" in the (say) twentieth generation show no sign of the remarkable size of their mid-ancestors in that degree, bat the offspring in the first generation do so unmistakably.

The results of our only two valid limiting suppositions are therefore (1) that the mid-parental deviate, pare and simple, influences the offspring to $\frac{4}{9}$ of its amount; (2) that it influences it to the $\frac{6}{11}$ of its amount. These values differ bat slightly from $\frac{1}{2}$, and their mean is closely $\frac{1}{2}$, so we may fairly accept that result. Hence the influence, pare and simple, of the mid-parent may be taken as $\frac{1}{2}$, of the midgrandparent $\frac{1}{4}$, of the mid-great-grandparent $\frac{1}{8}$, and so on. That of the individual parent would therefore be $\frac{1}{4}$, of the individual grandparent $\frac{1}{16}$, of an individual in the next generation $\frac{1}{8 \pi}$, and so on.
[I do not propose here to discuss the reason why the effective heritage of the child should be less than the accumulated deviates of his ancestors. It is obviously connected with considerations that bear on stability of type.]

Pure breed.-In a perfectly pure breed, maintained during an indefinitely long period by careful selection, w would become $=0$, and the value of b would be changed, but apparently only a little. Call its new value β. It may be roughly estimated as follows. In mixed breeds the value of b includes the probable uncertainty of the implied value of the contributions inherited from the mid-grandparents, and from the mid-ancestry of each preceding generation. This can be bat a trifle. Suppose the quartile of the ancertainty in the implied stature of each grandparent to be even as much as 1.7 inch (we need not wait to discuss its precise value), then the quartile of the uncertainty as regards the implied mid-grandparental stature would be $1 / \sqrt{ } 4 \times$ that amount, or say 0.8 . The proportion of this, which would on the average be transmitted to the child, would be only $\frac{1}{4}$ as much, or 0.2 . From all the higher ancestry put together, the contribation would be much less than this, and we may disregard it. The result then is $b^{3}=\beta^{2}+0 \cdot 04$. Taking $b=1 \cdot 07$, this gives $\beta=1 \cdot 05$ inch.

Probable Stature of the C'hild when the Statures of reveral of his Kinsmen are known.-First we have to add their several contribations as assessed in the last paragraph but one, and to these we have to add whatever else may be implied. A just estimate of the latter requires the solution of a very complex problem. Thus :-a tall son has a short father; this piece of knowledge makes us suspect that the mother was tall, and we should do wrong to set down her anknown stature as mediocre. Our revised estimate would be further modified if we knew the stature of one of her brothers, and so on. Moreover, the general equation $w^{2} p^{2}+f^{2}=p^{2}$ may cease to hold good. The pos-
sible problems are evidently very rarious and complicated, I do not propose to speak further about them now. It is some consolation to know that in the commoner questions of hereditary interest, the genealogy is fully known for two generations, and that the average influence of the preceding ones is small.

In conclasion, it must be borne in mind that l have spokeu throughout of heredity in respect to a quality that blends freely in inheritance. I reserve for a future inquiry (as yet incomplete) the inheritance of a quality that refuses to blend freely, namely, the colour of the eyes. These may be looked upon as extreme cases, between which all ordinary phenomena of heredity lie.

Appendix. By J. D. Hanilton Dickson. Problem 1.

A point P is capable of moving along a straight line $P^{\prime} O P$, making an angle $\tan ^{-1 \frac{g}{3}}$ with the axis of y, which is drawn through O the mean position of P ; the probable error of the projection of P on $\mathrm{O} y$ is 1.22 inch : another point p, whose mean position at any time is P, is capable of moving from P parallel to the axis of x (rectangular co-ordinates) with a probable error of 1.50 inch. To discuss the "surface of frequency" of p.

1. Expressing the "surface of frequency" by an equation in x, y, z, the exponent, with its sign changed, of the exponential which appears in the value of z in the equation of the surface is, save as to a factor,

$$
\begin{equation*}
\frac{y^{2}}{(1 \cdot 22)^{2}}+\frac{(3 x-2 y)^{2}}{9(1 \cdot 50)^{2}} \tag{1}
\end{equation*}
$$

hence all sections of the "surface of frequency" by planes parallel to the plane of $x y$ are ellipses, whose equations may be written in the form,

$$
\begin{equation*}
\frac{y^{2}}{(1 \cdot 22)^{2}}+\frac{(3 x-2 y)^{2}}{y(1 \cdot 50)^{2}}=\mathrm{C}, \text { a constant } . \tag{2}
\end{equation*}
$$

2. Tangents to these ellipses parallel to the axis of y are found, by differentiating (2) and putting the coefficient of $d y$ equal to zero, to meet the ellipses on the line,
that is

$$
\left.\begin{array}{c}
\frac{y}{(1 \cdot 22)^{2}}-2 \frac{3 x-2 y}{9(1 \cdot 50)^{2}}=0, \tag{3}\\
\frac{y}{x}=\frac{\frac{6}{9(1 \cdot 50)^{2}}}{\frac{1}{(1 \cdot 22)^{2}}+\frac{4}{9(1 \cdot 50)^{8}}}=\frac{6}{17 \cdot 6}
\end{array}\right\}
$$

or, approximately, on the line $y=\frac{1}{3} x$. Let this be the line $O M$.

From the nature of conjugate diameters, and because P is the mean position of p, it is evident that tangents to these ellipses parallel to the axis of x meet them on the line $x=\frac{g_{3}}{3}$, viz., on OP.
3. Sections of the "surface of frequency" parallel to the plane of $x z$, are, from the nature of the question, evidently carves of frequency with a probable error $1 \cdot 50$, and the locus of their vertices lies in the plane $z O P$.
Sections of the same surface parallel to the plane of $y \dot{z}$ are got from the exponential factor (1) by making x constant. The result is simplified by taking the origin on the line OM. Thas patting $x=x_{1}$, and $y=y_{1}+y^{\prime}$, where by (3)

$$
\frac{y_{1}}{(1 \cdot 22)^{2}}-2 \frac{3 x_{1}-2 y_{1}}{9(1 \cdot 50)^{2}}=0
$$

the exponential takes the form

$$
\begin{equation*}
\left\{\frac{1}{(1 \cdot 22)^{2}}+\frac{4}{9(1 \cdot 50)^{2}}\right\} y^{\prime 2}+\left\{\frac{y_{1}^{2}}{(1 \cdot 22)^{2}}+\frac{\left(3 x_{1}-2 y_{1}\right)^{2}}{9(1 \cdot 50)^{2}}\right\} \tag{4}
\end{equation*}
$$

whence, if e be the probable error of this section,
$\left.\begin{array}{r}\frac{1}{e^{2}}=\frac{1}{(1 \cdot 22)^{2}}+\frac{4}{9(1 \cdot 50)^{2}} \\ \text { or [on referring to (3)] } \quad e=1 \cdot 50 \sqrt{\frac{9}{17 \cdot 6}}\end{array}\right\}$
that is, the probable error of sections parallel to the plane of $y z$ is nearly $\frac{1}{\sqrt{2}}$ times that of those parallel to the plane of $x z$, and the locus of their vertices lies in the plane $z O M$.

It is important to notice that all sections parallel to the same coordinate plane have the same probable error.
4. The ellipses (2) when referred to their principal axes become, after some arithmetical simplification,

$$
\begin{equation*}
\frac{x^{\prime 2}}{20 \cdot 68}+\frac{y^{\prime 2}}{5 \cdot 92}=\text { constant }, \tag{6}
\end{equation*}
$$

the major axis being inclined to the axis of x at an angle whose tangent is 0.5014 . [In the approximate case the ellipses are $\frac{x^{\prime 2}}{7}+\frac{y^{\prime 2}}{2}=$ const., and the major axis is inclined to the axis of x at an angle $\tan ^{-1 \frac{1}{2}}$.]
5. The question may be solved in general terms by putting $\mathrm{YON}=\theta, \mathrm{XOM}=\phi$, and replacing the probable errors 1.22 and 1.50 by a and b respectively : then the ellipses (2) are

Fig. 8.

$$
\begin{equation*}
\frac{y^{2}}{a^{3}}+\frac{(x-y \tan \theta)^{2}}{b^{2}}=\mathrm{C} \tag{7}
\end{equation*}
$$

equation (3) becomes
or

$$
\left.\begin{array}{l}
\frac{y}{a^{2}}-\tan \theta \frac{x-y \tan \theta}{b^{2}}=0 \tag{8}\\
\frac{y}{x}=\tan \phi=\frac{a^{8} \tan \theta}{b^{2}+a^{8} \tan ^{2} \theta}
\end{array}\right\}
$$

and (5) becomes

$$
\begin{equation*}
\frac{1}{e^{2}}=\frac{1}{a^{2}}+\frac{\tan ^{2} \theta}{b^{2}} \tag{9}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\tan \phi}{\tan \theta}=\frac{e^{8}}{b^{2}} \tag{10}
\end{equation*}
$$

If c be the probable error of the projection of p 's whole motion on the plane of $x z$, then

$$
c^{2}=a^{2} \tan ^{2} \theta+b^{2}
$$

which is independent of the distance of p 's line of motion from the axis of \boldsymbol{x}. Hence also

$$
\begin{equation*}
\frac{\tan \phi}{\tan \theta}=\frac{a^{2}}{c^{2}} \tag{11}
\end{equation*}
$$

Problem 2.

An index q moves under some restraint up and down a bar AQB, its mean pusition for any given position of the bar being Q; the bar, always carrying the index with it, moves under some restraint up and down a fixed frame $Y M Y$ ', the mean position of Q being M : the movements of the index relatively to the bar and of the bar relatively to the frame being quite independent. For any given observed position of q, required the most probable position of \mathbf{Q} (which cannot be observed); it being known that the probable error of q relatively to
Q in all positions is b, and that of Q relatively to M is c. The ordinary law of error is to be assumed.

If in any one observation, $\mathrm{MQ}=x, \mathrm{Q} q=y$, then the law of error requires

$$
\begin{equation*}
\frac{x^{2}}{c^{2}}+\frac{y^{9}}{b^{2}} \tag{12}
\end{equation*}
$$

to be a minimum, subject to the condition

$$
x+y=a, \text { a constant. }
$$

Hence we have at once, to determine the most probable values of x^{\prime}, y^{\prime},

$$
\begin{equation*}
\frac{x^{\prime}}{c^{2}}=\frac{y^{\prime}}{b^{2}}=\frac{a}{b^{2}+c^{2}} \tag{13}
\end{equation*}
$$

and the most probable position of Q, measured from M, when q 's observed distance from M is a, is

$$
\frac{c^{2}}{l^{2}+c^{2}} a
$$

It also follows at once that the probable error v of \mathbf{Q} (which may be obtained by sabstituting $a-x$ for y in (12)) is given by

$$
\begin{equation*}
\frac{1}{v^{2}}=\frac{1}{c^{9}}+\frac{1}{b^{2}}, \text { or } v=\frac{b c}{\sqrt{b^{9}+c^{2}}} \tag{14}
\end{equation*}
$$

which, it is important to notice, is the same for all values of a.
Throughont this discussion the technical term "probable error" has been used; it may in every instance be replaced by Mr. Galton's very apt name " quartile," in which case the results of these problems may be read in conjunction with Mr. Galton's papers.

Table I.
Ogive, or Normal Carve of Distribation of Error.

Abscisser reckoned from 0° to $\pm 50^{\circ}$ (value of the probability integral).		Corresponding ordinates (or deviates).	
		Value of the deviate when modulus $=1$, A.	Value of deviate reduced proportionately to quartile $=1$, B.
Quartile	10	0-179	$0 \cdot 38$
	20	$0 \cdot 371$	$0 \cdot 78$
		0.477	1.00
	30	$0 \cdot 595$	$1 \cdot 25$
	40	$0 \cdot 906$	$1 \cdot 90$
	45	$1 \cdot 163$	$2 \cdot 44$

Table II.
Comparison of observed Ogives with the Normal.

-	Abscisse of the half-ogive.						Value of the unit in inches.
	10.	20.	25.	30.	40.	45.	
Normal ogive, from Table I.	0-38	$0 \cdot 78$	$1 \cdot 00$	$1 \cdot 25$	1.90	$2 \cdot 44$	$1 \cdot 00$
General population, R.F.F.....	$0 \cdot 33$	$0 \cdot 74$	1.00	$1 \cdot 23$	$2 \cdot 06$	$2 \cdot 62$	$1 \cdot 7$
Population of brothers, R.F.F..	0-36	$0 \cdot 78$	1.00	$1 \cdot 41$	1.95	$2 \cdot 12$	$1 \cdot 7$
, ", specials.	0-38	$0 \cdot 79$	1.00	1 -25	1.92	$2 \cdot 46$	$1 \cdot 7$
Mid-parentages	$0 \cdot 35$	$0 \cdot 79$	$1 \cdot 00$	$1 \cdot 28$	$2 \cdot 12$	$2 \cdot 78$	$1 \cdot 2$
Brothers in random pairs, R.F.F.	$0 \cdot 47$	0.84	$1 \cdot 00$	$1 \cdot 29$	$2 \cdot 11$	$2 \cdot 64$	$1 \cdot 4$
" \quad, specials.	$0 \cdot 42$	0•78	$1 \cdot 00$	$1 \cdot 25$	1.88	$2 \cdot 44$	$1 \cdot 4$

Note.-The second decimal is only approximate.
Table III (R.F.F. Data).
Number of Adult Children of varions Statares born of 205 Mid-parents of various Statures.

Height of the mid. parenta in inches.	Heights of the adult children.														Total number of		Medians.
	Below	62.2	63.2	$64 \cdot 2$	$65 \cdot 2$	66.2	$67 \cdot 2$	68.2	$69 \cdot 2$	$70 \cdot 2$	71.2	$72 \cdot 2$	$73 \cdot 2$	Above.	Adult children.	Midparents.	
Above	-	\cdots	\cdots	\cdots	.	\cdots	\cdots					1	3		4	5	
$72 \cdot 5 . .$.	-	.	.	\cdots	\cdots	..	\cdots	1	2	1	2	7	2	4	19	6	$72 \cdot 2$
$71.5 . .$.	\cdots	\cdots	\cdots	\cdots	1	3	4	3	5	10	4	9	2	2	43	11	$69 \cdot 9$
70-5....	1	.	1	-	1	1	3	12	18	14	7	4		3	68	22	$69 \cdot 5$
69-5....	.	\cdots	1	16	4	17	27	20	33	25	20	11	4	5	183	41	$68 \cdot 9$
$68 \cdot 5 . .$.	1	.	7	11	16	25	31	34	48	21	18	4	3	..	219	49	$68 \cdot 2$
67 '5...	-	3	5	14	15	36	38	28	38	19	11	4	..	.	211	33	$67 \cdot 6$
$66 \cdot 5 . .$.	.	3	3	5	2	17	17	14	13	4	\cdots	\cdots	78	20	$67 \cdot 2$
$65 \cdot 5 . .$.	1	-	9	5	7	11	11	7	7	5	2	1	\cdots	..	66	12	$66 \cdot 7$
64.5....	1	1	4	4	1	5	5	\cdots	2	\cdots	.	23	5	$65 \cdot 8$
Below	1	-	2	4	1	2	2	1	1	. \cdot	.	.	. \cdot	.	14	1	
Totale . . .	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	
Medians ..	-•	\cdots	66.3	$67 \cdot 8$	$67 \cdot 9$	$67 \cdot 7$	$67 \cdot 9$	$68 \cdot 3$	$68 \cdot 5$	69.0	69.0	$70 \cdot 0$					

[^2]Family Likeness in Stature.
au 0xi+4x
Heights to Men of varion Heights Families of Six Brothers and upwards being excluded.

Heighte of the men in inches.	Heights of their brothers in inches.														Total cases.	Medians.
	Below $61 \cdot 7$	$62 \cdot 2$	$63 \cdot 2$	64.2	$65 \cdot 2$	66.2	$67 \cdot 2$	68.2	$69 \cdot 2$	$70 \cdot 2$	71.2	$72 \cdot 2$	$73 \cdot 2$	Above $73 \cdot 7$		
Above 73.7	-	.	.	.	1	.	1	\cdots	1	4	3	3	3	2	18	
$73 \cdot 2 \ldots$	1	-	-	.	.	-	1	1	2	1	3	4	.	3	16	
$72 \cdot 2 \ldots$	1	.	1	2	1	1	-	8	6	8	11	5	4	3	51	$70 \cdot 3$
71.2 ...	\cdots	.	.	4	4	4	9	11	15	12	8	11	3	3	84	$69 \cdot 3$
$70 \cdot 2 \ldots$	1	-	2	4	3	7	6	12	25	18	11	8	1	3	101	$69 \cdot 3$
$69 \cdot 2 \ldots$	-	-	4	6	13	12	18	29	29	24	15	6	2	1	159	$68 \cdot 6$
68.2	1	-	-	3	6	7	15	16	29	12	11	8	1	-	109	$69 \cdot 9$
67.2	1	-	4	3	8	14	21	15	19	6	9	.	1	1	102	67.7
$66 \cdot 2 \ldots$.	-	1	7	10	12	14	7	12	7	4	1	-	-	75	67.2
$65 \cdot 2 \ldots$	-	1	1	4	13	9	8	6	13	3	4	1	.	1	64	$67 \cdot 2$
64.2...	-	1	-	6	4	7	3	3	6	4	4	2	-	-	40	$67 \cdot 3$
$63 \cdot 2$	-	-	. \cdot	.	1	1	4	\cdots	4	2	-	1	-	-	13	
$62 \cdot 2 \ldots$	-	-	\cdots	-	1	-	-	-	-	-	-	-	-	-	1	
Below 61.7.... \cdot	.	.	1	1	.	1	.	1	1	.	5	
.	5	2	13	39	65	74	101	109	161	102	83	51	16	17	838	

Table V (Special Data).
Relative number of Brothers of various Heights to Men of various Heights, Families of Five Brothers and

Heights of the men in inches.	Heights of their brothers in inches.													Total cases.	Medians.
	Below 63	$63 \cdot 5$	$64 \cdot 5$	$65 \cdot 5$	$66 \cdot 5$	67-5	$68 \cdot 5$	$69 \cdot 5$	$70 \cdot 5$	71.5	$72 \cdot 5$	$73 \cdot 5$	Above 74		
74 and above	1	1	-	-	.	\cdots	-	1	1	-	5	3	12	24	
73-5.	-	-	-	-	-	1	3	4	8	3	3	2	3	27	
72-5.......	-	\cdots	-	-	1	1	6	5	9	9	8	3	5	47	$71 \cdot 1$
$71 \cdot 5$.	-	1	-	1	2	8	11	18	14	20	9	4	-	88	$70 \cdot 2$
70-5........	-	-•	1	1	7	19	30	45	36	14	9	8	1	171	$69 \cdot 6$
$69 \cdot 5$.	-	1	2	1	11	20	36	55	44	17	5	4	2	198	$69 \cdot 5$
68-5.......	.	1	5	9	18	38	46	36	30	11	6	3	-	203	68-7
67-5.	2	4	8	26	35	38	38	20	18	8	1	1	-	199	$67 \cdot 7$
66-5.	4	3	10	33	28	35	20	12	7	2	1	-	-	155	$67 \cdot 0$
65.5	3	3	15	18	33	36	8	2	1	1	-	-	\cdots	110	$66 \cdot 5$
64-5........	3	8	12	15	10	8	5	2	1	\cdots	-	\cdots	-	64	$65 \cdot 6$
63-5.	5	2	8	3	3	4	1	1	\cdots	1	-	-	1	20	
Below 63	5	5	3	3	4	2	-	-	.		-	\cdots	1	23	
Totals	23	29	64	110	152	200	204	201	169	86	47	28	25	1329	

Table VI.
Construction of Ogives from Observations.
(The Statures are here distribated in grades of ono inch each.)

$\begin{aligned} & \text { The } \\ & \text { number } \\ & \text { of the } \end{aligned}$grade.	Goneral population. (R.F.F.)			Population of brothers. (R.F.F.)			Population of brothers. (Specials.)		
	Number of cases in each grade.	Sums from the beginning.	$\begin{gathered} \text { Per } \\ \text { cents. } \end{gathered}$	Number of cases in each grade.	Sums from the beginning.	$\begin{gathered} \text { Per } \\ \text { cents. } \end{gathered}$	Number of cases in each grade.	Sums from the beginning.	$\underset{\text { cents. }}{\substack{\text { Per }}}$
	A.	B.	c.	A.	B.	c.	A.	B.	c.
1........	5	5	$0 \cdot 5$	5	5	0.6	23	23	1.7
2.......	7	12	$1 \cdot 3$	2	7	0.7	29	52	$3 \cdot 9$
3.......	32	44	$4 \cdot 8$	13	20	$2 \cdot 4$	64	116	8.7
4.... ...	59	103	11.1	39	59	$7 \cdot 1$	110	226	16.9
5.......	48	151	$16 \cdot 3$	65	124	14.8	152	378	28.2
6........	117	268	$28 \cdot 9$	74	198	$23 \cdot 7$	200	578	$43 \cdot 1$
7........	138	406	$43 \cdot 8$	101	299	$35 \cdot 7$	204	782	58.4
8........	120	526	$63 \cdot 1$	109	408	48.7	201	983	$73 \cdot 4$
9........	167	693	74.7	161	569	68.0	169	1152	86.0
10........	99	792	$85 \cdot 4$	102	671	80.2	86	1238	$92 \cdot 4$
11........	64	856	$92 \cdot 2$	83	754	$90 \cdot 1$	47	1285	$95 \cdot 9$
12.......	41	897	96.7	51	805	96.2	28	1313	98.8
13........	17	914	98.5	16	821	98.1	25	1338	$100 \cdot 0$
14........	14	998	100.0	17	838	$100 \cdot 0$..		10

Table VII.
Measurement of Ogives.
The Entries are Ordinates to the Curves constructed from Table VI, at points which are situated in every case, at the same fractional divisions, either of their bases as in the first lines of each of the three groups, or of their axes as in the other lines.

Abecisse, reckoned from the middle of the ogive, in percentagee of the length of its axis.													
	-45	-40	-30	-25	-20	-10	0	+10	+20	+25	+30	+40	+45
General population (R.F.F.)	$2 \cdot 85$	3•75	5.27	$5 \cdot 68$	$6 \cdot 10$	6.75	7-32	$7 \cdot 85$	8.60	9.05	$9 \cdot 50$	10.67	11.65
	$4 \cdot 47$	3-57	1.95	1.64	1.22	0.57	0.00	0.53	1.28	$1 \cdot 73$	$2 \cdot 18$	$3 \cdot 35$	$4 \cdot 33$
							0.00	$0 \cdot 57$	$1 \cdot 22$	1.64	1.95	$3 \cdot 57$	$4 \cdot 47$
	Means.						0.00	0.55	1-25	1.68	2.07	$3 \cdot 46$	$4 \cdot 40$
Population of brothers (R.F.F.) ..	$\begin{aligned} & \hline 3 \cdot 55 \\ & 4 \cdot 40 \end{aligned}$	$\begin{aligned} & 4 \cdot 38 \\ & 3 \cdot 57 \end{aligned}$	$\begin{aligned} & 5 \cdot 60 \\ & 2 \cdot 35 \end{aligned}$	$\begin{gathered} 6 \cdot 12 \\ 1 \cdot 73 \end{gathered}$	$\begin{aligned} & 6.54 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 7 \cdot 35 \\ & 0 \cdot 60 \end{aligned}$	7.95*	8.59	9-17	9•63	$10 \cdot 00$	11.00	11.80
							0.00	0.64	$1 \cdot 22$	$1 \cdot 68$	$2 \cdot 05$	3.05	$3 \cdot 85$
							0.00	$0 \cdot 60$	1.41	$1 \cdot 73$	$2 \cdot 35$	$3 \cdot 57$	4.40
			Means..............				0.00	$0 \cdot 62$	$1 \cdot 32$	1.70	$2 \cdot 40$	3 31	$3 \cdot 61$
Population of brothers (spocials) ...	$\begin{aligned} & 2 \cdot 45 \\ & 4.00 \end{aligned}$	$\begin{aligned} & \hline 3 \cdot 15 \\ & 3 \cdot 30 \end{aligned}$	$\begin{aligned} & 4 \cdot 28 \\ & 2 \cdot 17 \end{aligned}$	$\begin{aligned} & 4 \cdot 72 \\ & 1 \cdot 73 \end{aligned}$	$\begin{aligned} & 5 \cdot 12 \\ & 1 \cdot 33 \end{aligned}$	$\begin{aligned} & 5 \cdot 76 \\ & 0 \cdot 69 \end{aligned}$	6.45	7-10	$7 \cdot 77$	$8 \cdot 10$	$8 \cdot 52$	$9 \cdot 65$	$10 \cdot 75$
							0.00	$0 \cdot 55$	1.32	1.65	2.07	$3 \cdot 20$	$4 \cdot 30$
							0.00	0.69	1.33	1.73	$2 \cdot 17$	3-30	4.00
				Means...............			0.00	$0 \cdot 64$	1.33	$1 \cdot 69$	$2 \cdot 12$	3-25	$4 \cdot 15$

"The values are unsmoothed with this one exception. Its correction in no way affects the line headed "means."

Table VIII. (Special Data.)

Number of cases in which the Stature of individual Brothers was found to deviate to various amounts from the Mean Stature of their respective families.

Number of brothers in each family	4	5	6	7
Number of families	39	23	8	6
Amount of deriation.	Number of cases.	Number of cases.	Number of cases.	Number of cases.
Under 1 inch.	88	62	20	21
1 and under 2	49	30	18	14
2 and under 3	15	17	5	6
3 and under 4	4	3	3	1
4 and above	.	3	2	-•

IL "The Early Development of Julus terrestris."* By F. G. Heathcote, M.A., Trin. Coll. Cam. Communicated by Professor M. Foster, Sec. R.S. Received January 6, 1886.

The following are the principal results of my investigations on the carly development of Julus terrestris since June, 1882.

When laid the egge are oval in shape, white, and covered with a thick chitinous chorion. The nucleus is situated in a mass of protoplasm in the centre of the ovam. This mass of protoplasm is of irregular shape, but its long axis corresponds with that of the ovam. From it, anastomosing processes radiate in all directions, forming a network throughont the egg. The yolk-spherales are contained within the meshes of this network. The nuclens is not a distinct vesicle but its position is marked by chromatin granules. There is no nacleolus.

Early on the second day the nucleus and the central mass of protoplasm apparently divide into two parts. But this division is not complete, the two resulting masses with their nuclei remaining connected by a network of protoplasm. Each of these divides in the same incomplete manner, so that we now have four segments all connected together. This process is continued until there are a considerable number of segmentation masses present, and early on the

[^3]
[^0]: * A plaster model of one of these intermediate forms was exhibited at the meeting by Mr. J. D. H. Dickson, who stated that his recent mathematical investigation of the properties of their surfaces, had shown that no strictly straight line could be drawn upon them.-F. G.

[^1]: * In all my measurements the second decimal is only approximately correct.

[^2]: Note.-In calculating the medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run $62 \cdot 2,63 \cdot 2, \& c$., instead of $62 \cdot 5,63 \cdot 5$, \&cc., is that the observations are unequally distributed between 62 and 63 , 63 and 64 , \&c., there being a strong bias in farour of integral inches. After careful consideration, I concluded that the headings, as adopted, pest satisfied the conditions. This inequality was not apparent in the case of the mid-parents.

[^3]: * Mr. J. D. Gibson Carmichael, F.L.S., has kindly identified the species for me as Julus terrestris, Leach, 1814.

