vii.) DISCUSSION OF THE DATA OF STATURE. 109

I obtained the value for Fraternal Regression of 2 ; that is to say, the unknown brother of a known man is probably only two-thirds as exceptional in Stature as he is. This is the same value as that obtained for the Regression from Mid-Parent to Son. However paradoxical the fact may seem at first, of there being such a thing as Fraternal Regression, a little reflection will show its reasonableness, which will become much clearer

later on. In the meantime, we may recollect that the

FRATERNAL REGRESSION |
|||||

R. F. F. 94 ed as 70 7E |
|||||

72 |
|||||

70 |
|||||

68 |
|||||

go 64 |
AiA |
FA* |
|||

unknown brother has two different tendencies, the one to resemble the known man, and the other to resemble his race. The one tendency is to deviate from P as much as his brother, and the other tendency is not to deviate at all. The result is a compromise.

As the average Regression from either Parent to the Son is twice as great as that from a man to his Brother, a man is, generally speaking, only half as nearly related