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THE MOST SUITABLE PROPORTION BETWEEN
THE VALUES OF FIRST AND.SECOND PRIZES.

By FRANCIS GALTON, F.R.8.

A CERTAIN sum, say £100, is available for two prizes to be awarded at a
forthcoming competition; the larger one for the first of the competitors, the
smaller one for the second. How should the £100 be most suitably divided
between the two? What ratio should a first prize bear to that of a second one?
Does it depend on the number of the competitors, and if so, in what way ? Similar

questions may be asked, but will not be answered here, when the number of prizes’
exceeds two. What should be the division of the £100 when three prizes are to

be given, or four, or any larger number?

The interest of this memoir does not depend solely upon the answer to the
above questions, but more especially on its bringing to evidence a new property of
the law of frequency of error, upon which I stumbled while engaged upon a side
branch of the inquiry.  The problem then before me (of which the results are
still unpublished) was the probability that the winner of a first or of a second
prize in a given year, would succeed in winning first or second prizes in subsequent
years. The data assumed the following form:—100 winners of a first place
supplied m (1) winners of a first place, and n(1) winners of .a second place in
subsequent years, while 100 winners of a second place supply m (2) winners of
a first place and #(2) winners of a second place. What are the future prize-
winning capacities of winners of first and second places respectively? Let the
most appropriate values of first and second prizes be called « and 3, then

a_ a.m(l)+B8.n(1)

B~ a.m(2)+8.n(2)

whence l% can be determined.

Having found its value for the cases with which I was dealing, I sought to
compare it with another obtained through the ordinary law of frequency of error,
on the following bases:
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386 Values of First and Second Prizes

(1) I concluded that when only two prizes « and 8 are given, their values
should not be proportioned to the absolute merits of the two competitors, but to
their respective ewcesses of merit above the third competitor, who receives no prize
at all. Let [4], [B], and [C] be the first, second, and third competitors, and a, b, ¢
the marks allotted to them, then I conceive the most suitable relation of a to 8
is a8 (@ —c¢) to (b—c), and not as @ to b. '

(2) If there be n competitors, considered as random samples from a large
body among whom merit is normally distributed, the most reasonable presumption
is that they will tend to occupy n equally probable positions. In the ordinary
table of the Probability Integral the argument is + ha, whose values range from
0 to 1 infinity, and the tabular values are those of @ (hx).ranging from 0 to + 1.
For the present purposes ® (hs) must be taken as the argument, running from — 1,
through 0, to + 1, and Az becomes the tabular value, If there be n competitors
the most equable, and therefore the most probable distribution of them along the
scale of + @ (hw), is that one competitor should fall into each of the n equidistant
stalls (4 n stalls lying on either side of 0), the septa that enclose those stalls being
situated a$ 0, +2, + 4, ... +n on the positive side and at 0, =2, -4, ... —n on the
negative side. I assume that each competitor fills his stall, and that his position
is expressed with needful precision by the middle of the stall. Consequently the
places of the several competitors will be taken to be at +1, +3, +5, ... +(n-1)
on the positive side and at —1,—38, —5, ...—(n—1) on the negative side.
Their position is purely a question of evenly distributed probabilities, entirely
unconnected with the law by which the values of hax to which they refer are
established. At the same time I am aware that others may hold that this
method fails in aceuracy, by treating the curve of distribution as a polygon,
but I shall not stop to argue the point further because the difference of result
is too small to weigh in the present argument. Following a nomenclature already
adopted, in which the words ‘centile’ and ‘decile’ occur, I will call the
values in any array corresponding to those of @ (hz)=+1,+8, £5,... + (n~1),
by the name of “equi-postiles,” and those of the septa between which they stand
by that of “ equi-partiles.”

(8) Thus far it has been implied that the value of » is known, but, as a matter
of fact, it seems usually impossible to arrive at even a grossly approximate idea of

the number of virtual competitors; which far exceeds their actual number in all

important competitions. The number of runners in the Derby are few, but they
include the best horses.out of a multitude of thoroughbreds, who are all qualified
for entry but whose owners keep them back because their chance of winning was
found by trial performances to be nil. The same happens in University scholar-
ships, in the principel athletic sports, and in all competitions that arouse a widely
felt and keen desire for distinction, .

Therefore being ignorant of n, I selected a few widely different values of it
for trial and worked out the ® (hs) values of [4], [B], and [C] by the formula
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FRraNos GALTON 387

;l—z-((n—l), (n—38), (n—5)). Then I took from the Probability Integral Tables

the corresponding values of haz.

As an example of the complete process let n=10, then the most probable
values of @ (hz) for the ten competitors will, according to my assumption, be
-09, —07, —-05, —03, ~01, +01, +03, +05, +07, +09.

They are separated by equal distances from one another and by the half of
those distances from the septa, including the terminals, that enclose them.

Confining ourselves to the first three terms on the positive side, that is to
+09, +07 and + 05, we find from the Probability Integral Tables that the
corresponding values of hz are + 11631, + 07329, 4 0-4770.

The percentage values of (¢ —¢) and (b—c) (as described above in (2)), are
quickly derived from these. We will call them X and ¥, and their sum S.

ha=11631 | h(a—c)=06861
hb = 07329 k(b —c)=02559
he = 04770 hS = 09420
X:100::h(@a—c):hS; Y:100::h(b—c):RS.
Whence X =728, ¥=272
Thus & disa;ppears from the result while m, the Mean, does not come under
consideration. If it had been taken into consideration by writing m+a for g,

m+b for b, and m + ¢ for ¢, it would have been eliminated by the subtractions,
ag. h was by the divisions,

Similarly if n be taken =1000, the values of ® (hz) for [4], [B], and [C] would
be + 09990, + 09970, and + 09950 which give ha =+ 2:3268, hb = + 20985, and
he = + 19849,

Proceeding 1n this way for many widely different values of #, I found to my
astonishment that the resultant X and ¥ values for those of n=10 and above,
came out curiously alike, as is shown in Table L

TABLE L
n x Y X+Y
3 667 333 1000
5 710 290 "
10 72:8 273 ”
20 738 262 »
50 743 257 »
100 745 255 »
1,000 751 249 »
10,000 753 247 ”
100,000 754 246 »

41-—2
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388 Values of First and Second Prizes

The values of X between those corresponding to n =50 and # = 100,000 range
within & difference of 1'1. The smallest possible class in which ¢ is not negative,
consists of five individuals, and even here the proportion of X to ¥ is as 71'0 to
290, which does not differ grossly from that in a class of 100,000 where it is 754
to 24'6. Nay, even taking the smallest possible class which is of three individuals,
in which the values of ha, b, he are respectively equal to —¢, 0, and +¢, the value
of ‘h(a—c)=2hc and that of h(b—c)=~hc. Consequently S =38he, therefore
X =100x 3, and ¥=100 x4, =66 and 333 as in the Table.

The rationale of the approximate uniformity of the value of X and Y seems
well worthy of a more searching mathematical investigation than I am competent
to make. It seems difficult to doubt that this curious property of the terminal
equi-postiles is associated with others whose character cannot now be foreseen.

Comparison with facts. Many serious objections present themselves & prior: to
the useful application of this theory, among which is the partial non-conformity
of examination marks with the law of frequency, especially at either end of the
series, one of which is precisely the part here in question. I therefore put
the theory to test by procuring through the kindness of friends a large number
of sets of marks in various Civil Service examinations. I took them just as they
came and found the X and Y values for each case, as in the following example.

No. 268.
a = 1801 a—c=130

b=1712 b—c= 41
c=1671 S=171
X:100::130:171; ¥Y:100::41:171
X=780; ¥Y=220; Total 100,

I grouped these values into fives, each page of my MS. book containing that
number, then into twenty-fives, and so on. Individually their values ran very
irregularly, but the groups of 25 began to give hopeful indications which were
fully confirmed by larger groupings; as is shown in Table IL where the X
values alone are entered. Those of ¥ are of course complementary to them.

Thus far the evidence that the calculation was correct in principle seemed
conclusive, owing to its being so remarkably well confirmed by observation. In fact,
I lived for a few days in a fool's paradise, thinking that such was the case, until
with the desire of probing the matter more thoroughly, I made a Table of the
distribution of the individual observations. The result is shown in Table III.,
which shattered my sanguine hopes. If the principle upon which the calculation

is based had a contributory effect to any noticeable degree, in producing the

mean value of 734 as shown in Table IL, there would have been a concentration
of values about that point in Table III. But there is nothing of the kind. The
values are pretty equably distributed between 50 and 100, with a slight but
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distinct tendency in the smaller values to be the more numerous. This seems
due to the fact that the curve of distribution (see Natural Inheritance) is always
convex towards its axis; consequently b—¢ is on the average less than }(a—c).

TABLE IL v
Values of X derived from 800 Lists of Marks in various Civil Service
Eaaminations.
Mean values of successive groups of
25 oases | 60 cases | 100 cases
Tae } 4
e }'72-6 } e
(54 } 733
w8 |}oos } w
(4 } 785
T }73-9 } T

Mean of all 300 cases, 73-4.

Subject to this qualification, the Mean is no more than the average of random
values between certain limits. Those limits are created by the conditions (1) that
b cannot exceed a though it may be equal to @, in which case one of the limits
is 100 (@ — ¢) divided by 2 (e —c), or 50; (2) that b cannot exceed ¢ though it may
be equal to ¢, in which case the other limit is 100 (a — ¢) divided by (a —c)+0,
or 100.

TABLE IIL
Distribution of 300 Observed Values of X.

50— | 66— | 60— ‘ 66— | 70— | 76— | 80— | 86— | 90— | 95— | Total

40 36 27 | 31 32 23 34 30 26 21 300
.

e B R R
76 58 55 64 47 300
166 13¢ 300

Therefore it appears to be merely a coincidence that calculation and observation
lead to much the same conclusion. The principle on which the former is based
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390 Francis Galtor’s

is practically neutral in its effect on the observed results, neither contributing to
nor conflicting with them in a sensible degree. The curious property of the
foremost equi-postiles that it discloses, must rest its claims to interest upon its
own merits and not upon any effective aid that it might be supposed to afford to
solving the question of the most suitable proportion between the values of first
and second prizes.

What I profess to have shown is

(1) that in the three topmost equi-postiles of a normal series, whose
measures are @, b, and ¢, the value of (¢ —¢) is roughly three times as great as
that of (b —¢), almost independently of the number of individuals in the series
and quite independently of its Mean and of its Modulus of Variability.

(2) that observation leads to practically the same result as calculation,
but almost wholly for a different reason.

(3) that when only two prizes are given in any-competition, the first
prize ought to be closely three times the value of the second.

I now commend the subject to mathematicians in the belief that those who

are capable, which I am not, of treating it more thoroughly, may find that-

further investigations: will repay trouble in unexpected directions.

Note on Francis Galton’s Pro’bl‘em.

(1) TEE problem proposed by Mr Galton is one of very great interest and, somewhat
generalised, probably of wide application to a number of important biometrical -investigations.
In its generalised form it seems to open up possibilities of deducing statistical constants from
comparatively small samples, for it provides us for the first time, I believe, with the most
probable relationships between the individuals forming a random sample. I would state the
problem as follows ;

4 rand ple of n individuals is taken from a population of N members which when N is
very large may be taken to obey any law of frequency expressed by the curve y=N¢p (x), ydz being
‘the total frequency of individuals with characters or organs lying between x and x+8z. It is
required to find an expression for the average difference tn character between the p and the (p 4 1)%
individuals® when the sample 18 arranged tn order of magnitude of the character.

I propose to call this general problem : Francis Golton's Individual Difference Problem in -

Statistics, or more briefly Galton's Difference Problem. It will be seen at once to carry us from
the consideration of the means and standard deviations of mass aggregates and arrays to the
average interval between individuals of those aggregates. We may still deal with averages, but
we fix our attention no longer on the whole population, but on definite individuals in its ordered
array. - This I believe to be & real advance in statistical theory.

* Clearly a knowledge of the average difference in character of adjacent individuals involves also
& knowledge of the average difference in character between any two.individuals,
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Difference Problem 391

(2) Let the figure represent any frequency distribution given by y=~N¢(«), where we may
suppose the limits, if finite, to be extended, if necessary, from +w to —® by zero ordinates.
We make no hypothesis as to the nature of the distribution, or the position of the origin; as a

P

- M'M +z

corollary we will deal with the case of normal distribution. ~ Let & be the number of individuals
or the area of the curve®, A the area to the left of any ordinate PM =y, at & character-value
OM=x. Thus the area to the right is N~ 4. Then, if a=4/¥, we shall have:

a= f 2 G010 oo il

an integral which may be supposed known when the distribution of the general population is
known,

We first note that the chance of any random individual having a character less than
# =A[Nw=q, and having a character greater than z =(¥~4)/N=1—a Now let O =z,
correspond to the p*t individual’s character reckoned downwards and OM'=z,,,, to the next or
(p+1)* individual’s character. Then we require first to find the mean value of M’ M=z,—2,,,,
there being p~1 individuals to right of P} and n—p-1 individuals to left of P}’ in the
sample of # individuals we are selecting out of the population. The chance of an individual
falling at # is given by y,8xz,/¥, and of one at M’ by y, ,,8x,, /N ; the chance of an individual
to left of P M’ =Ay, /N and to right of PH =(N—-A4,)/N. The total chance therefore of an
individual at ¥, another at M’ and.n ~p~1 to left of P}’ and p—1 to right of PH

- ypz:; x zﬂl%&ﬂx (_A_%)ﬂ-ﬂ-l x (N—A,)::-x.

But clearly we could permute the two individuals as well as those to right and left of PM and P’ M’
and must introduce the factor I/ (r-p-1 I}_a:_l).'!' To get the average we must multiply the
chance thus obtained by the corresponding #,—2,,, and first integrate from #,,,=—w to 2,
and then for z, from —w to 4. For, the ptt and (p+1)* individuals may be anywhere in
the range provided (i) there are no individuals between them, (ii) the (p+ 1)t is anywhere below
the pth, (iif) p— 1 individuals fall above the latter, and (iv) n—p— 1 individuals below the former.
Hence if we write /' for 2,,,, # for #,, o for 4./, a for 4[N, y, for yp../N, y, for y,/N,
we have for x, the average interval between the pt® and (p+1)t individuals :

" @ :
Xn=—————w_!‘1‘p__l fiad‘” jf:d#yolyo’am—ﬂ'l(l-a)""l(w—.'a’)............(ii),
where by (i) '

dd _, da '
TZ =Y T =Yoreserees vessesarenas ensessesssesesnansensans(iii)

+o . +x
* 8ince f y dz=N, it follows that / ¢ (z) de=1,
- -0

1 We have to find the permutations of 1 things which may be distributed into four groups which
contain respectively p~1,n~p—1, 1, and 1 individuals. This is the same as the number of ways in
which out of n factors (¢ +y+2+u) we can pick out (p—1) 2's, (n—p—1) y’s, one z and one v, i.e. the
coefficient of a?-1y*~#-1su in (v4+y+2+u)* But this eoefficient is |n / (Lgi jn-p-1Jt E) I owe
this method of looking at the factor to Dr L. N. G. Filon.
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392 Prancis Galton’s
Consider first the & integral, i.e.
I=ftidz’yo’a'"“"1(x—-w’)=/iidu'a"“1°‘1(a:—w'),
and integrate it by parts. It equals:
I: s ] (- a!)]ﬂ ]+:: ;:"1—;

=L a""de’—-——- U, say.
n—p -p

or between limits:

Thus :

""=E%_-—1f " g0 U1~ a1,
l___l___. f U(1 - a)?~1da, by (iii),
l_ll’lz{[ Ua-apltT +

or, taking the value between limits and substituting %g,.we have

a- a)de},/

@ P(l —@)PdE .iiveerenniiinredianni e, (iv).

e lgj
This is the complete solution of Galton’s difference problem¥,

An interesting theorem which results from this has been given me by Mr W. F. Sheppard ;
namely : the average differences between successive individuals are the successive terms in

[[era-apde
-0
when the subject of integration is expanded by the binomial theorem.

Given any law of frequency y,=¢ (#), we must first find a from (i), and then when tables of
a have been made, calculate y, by quadratures from (iv). This will be fairly easy, if the distri-
bution be assumed to be normal, for then tables of a, or tables which readily give a, already
exist, and quadratures may be used on (iv) to any degree of accuracy required. This has been
done by Mr Sheppard in the cases cited below for comparison with Mr Galton’s results.

It will be seen that the fundamental difference between the above theory and Mr Galton’s
lies in the assumption of the latter, that the individual results of a special examination give a
sensibly normal distribution. The above theory only assumes that the competitors are a
perfectly random sample from material which if it were indefinitely large would obey the law of
frequency yy=¢ (@) Of course, if we want. to compare with Mr Galton’s results, we must
assume this law to be the normal law, but we still have the great generalisation that the actual
competitors are only a random sample from a great bulk of material following this law, In any
individual examination, it may be quite possible—especially if the competitors are few—that the
first man stands anywhere, even below mediocrity, and the chance of this is allowed for in this
the full mathematical theory.

* This result is due independently to Mr W. F. Sheppard and myself. I had stated Mr Galton’s
0
problem to him, and said that I had reduced it to a determination of f Ardz. He sent me, practically

-0
by return of post, the answer in the above notation, suggesting quadratures as the best practical
solution, and pointing out the theorem referred to in the text. )
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(3) Another method of reducing the integral in (iv) without quadratures is, perhaps, of
interest. I have found it convenient in other cases, where the integral limits are, or can be
safely extended to, 4:c0. Suppose we require to find;

+0
I= / Uda.

Let m be the value of z for which U reaches the maximum value U,, and let u=log U; thus
(u/d%)m=0, unless U,,=. Then we find :

o= e f(E3) a5
v (33 () (53] ]
sl (53, +(25) () J
v (). (85), 25, +m G5 Je

+terms in £ and higher powers} cerecarens cersressaenennens sevsrssrestasiaesaaes (v).

Now since U is a maximum, d2U/ds? and generally d%u/ds? will be negative. The limits of
¢ where #=m+- ¢ will also be +w, and the integral of U can thus be expressed in terms of the
well-known area and moments of the probability curve. In the first place, if 1/o?= - d?u/dax®

/-}-w c‘ﬂ‘/va eﬂ‘l'+1d£=0
-0
if 7 be an integer.

Further :

f e P L d5=(2i-1)(éi-a)......3. 1N2ratt1,

Hence writing aq=(%) » we find :
m

e 1 ay  ag+10a? | ay+56a;a;+35a,2 .
I=f_QUd$—Um“/§r——'—-_ag {1+—8a—;2— 48%8 + 384%4 —etc.}.........(vl)-

The successive terms often converge with such rapidity that two or three of them are quite
sufficient for practical purposes,

To apply this to our special case, we note
U=ar-7(1 -a),
u=Ilog U=(n—p)loga+plog(l—a),

du_1dU_(n-p _?_)'!s

dz~ Udz \ a 1-qo/dz

Hence if U be a maximum, we have du/dx=0, and

_ a=(n—p)/n, L= @=pP[fercerrrrrecsrnessncrsorannervonenss(ViL):
Thus m is to be found from
n—p (™
n —f—w Yo I,
Biometrika 1 42
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or, since

+
1=/_ Yo i,

L sea
£= " Yo B urerreannans SRR | 71118

We find at once:
: U =P pr

S R cenereeeerena(iZ).

It remains to find the successive differentials of u for #=m. Let us write the value of g, at
x=m, simply y,,, and we shall then have

(da/Ax)n =Y, dz“/d'”z=3/’m, Bajdri=y"n, ete.

‘We find :
“=~G-pp’™
2nt(n - 2p) 3n ,
Bl pP P I e pip Y

tym =00t (o 53) Vo = e o e Ot g

o= =240 (1 ) 9= (G ) P
~1008 (35 - ) (Bt 2P )
- bnt (10 + ﬁ) @Y "m+Ym Y"m)

=_120no( 1 -—5)3/°m 360n8 p‘ 4).’?'1».7'1»

1
w—ppTp (n—p)

~ 30mt ((n p)s+ )(9ymz/’,,.+4,4/3,,.y
- 30n3 (pa (n—p)ﬂ &Pt YnY ¥ m+Pny " m)

-~ n? — _P p)(lO.v/’ + 157 " m+ 6% V')

ete. -ete. L eeeens ceerenes versisesenesanens crserasieeertaisenereese vevsend(X)

These quantities may be calculated fairly easily when y is known as a function of #, the
coefiicients of the y terms in 2 and p repeating themselves in each a.

(4) Let us apply these results to the special case when the distribution from which the
material is drawn is supposed to obey the normal law. In this case, if s be the standard
deviation of the material from which the sample is made:

o~

Nars

a=f+zyolz',
-®

X =cxf+wn“"’(1—a)’.d:v if 0=’ o .
i - ’ n=pp".
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Write z=a/, then, if ys=y/

x,,=csf+”a»-»(1-a)vw oo (xi)
-
Hence dropping dashes we have:

E f+m 1 R
—°°J21r 9,

or: n=3p_ \/—fm T B (xii).
n T Jo

Thus as soon as 7 and p are known m can be found from tables of the probability integral,

Then we may find y,, from

or tables of the ordinates of the normal curve.
We easily find by differentiating (xiii) that :

Ym=— MYmsy Y 'm=(m*—1) g, Y'm=m(3- mz)."/m

=(B-6mE+mY) Yy, Ym=m (10ME~15—m%) gy, ...... veesessennne(XiV).
Substituting in (x) we find:
ay=—n? {771; +Il’} P ceeerennens i tedisnessessnnsannssiasennnenstiraransessias{XV)
= — 8 { @& -p)”} PPm+300 { - +})} myP, ........ s vrnanes (xvi).
o= =t s+ gy} 2ot 190 - —1p>*} e
—n? {;l;+ }(mﬂ ) erereerereressens ceveseeesseseeneseesrns(KVED)

ag = — 24nb _l& - ———_F)"} YO+ 600t {p’ @ p)s} myty,
~1008 (- s} omt=9) gt 500 {1 L (o 5)gp . Cavi

dg= ~ 12008 {ps (1 }y‘,,.+360n5{; = p)Q}mffm
1

~30mt {5+ G 1omt = )+ 300 {p* = p)*}"‘“"” -~
-n’(P+—-—>(3lm“ L T R —.C. )

If the o’s be found from these equations, then by (xi) and (vi):
n (n—pyrpP \/ (n=p)p 1

Xp=8 _L . ——Var
-2 lp Ym

m

ag+10a,?

{+8a’ 48%3 +et°-} .......n---.....................(XX).

42—2
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Here the term in o2 is geneially the.largest, o, the next and @ the least.

We can write the terms in the curled brackets:

H

10a,® (1&-—-2p)’ n— 2p m (n— p) pmd .

o= —4——8%3—-5‘——-“”("_?)?—% o 1g5 e ceeere(XXD).
(r—pP+p n-—‘-’@ m (n—p)p Tmi-4

Sa,’ -2 w2 —p)p +3 % e ceesnsennn (XXiid),

. (n=pp +p6 (" ‘P)"‘”‘ =
%=~ Tgap~ "I w(a —p)’p""’lﬁ'i i (n=p)p Ym

-5 (n—pP+p® 13m?~ +§ (n~2p)(n—p)p m(6m?--T)

nb ¥n n P
VLR N e~
And thus: -
Xo=2 Ié lg(”—”i:_pp” Npw \/(”_nf)p ;;{1+c1+c,+c,,+...} conenn(EEV).

The solution of the problem is now purely arithmetical, although of course laborious.

(5) We may note some special cases. »
Corollary (i). Suppose both n and p large and not nearly equal.
Since if ¢ be large
lg =N2rgg-ve-g,
we have
x,,=sﬁl-{1+cl+c,+cs+...} ............ ceernnraanerens voo(xxVi),
Ym o

& much simpler form.
Corollary (ii). Suppose n large and p small.
Namp pre=r 1
o=t _'_rréo_a

Corollary (iii). Suppose n large, and that we consider Mr Galton’s special problem of the
ratio of the distance between the first and second to the distance between the second and third
in a graduated array. Then

{1+cl+c,+ca+. 1 T crreesersees (xxvii).

L L et B T’ JLE LSOOt N (xxviii),
wheire undashed letters refer to qua.ntltles for p=1 and dashed letters to the same quantities
when p=2.

(6) As a first series of illustrations, let us apply these results to Mr Galton’s consideration
of the proportion of money to be given in prizes, suppusing only two prizes, for the cases n=3,
10, 50, 100, 1000.

The following table contains the chief values*. We write:
Xo=8X P (D) (L +ei+cg+egt...)ivierirrncnsrsosnncescannnens(XXIX).
Then, if d\,, be the difference measured in variability units between the rt and #th individuals,
A ={r+ Xr 41+ Xr+at -ooee: +x -1

* T owe to Dr Alice Lee, not only a careful revision of my numbers, but an extension of this fable.
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and Mr Galton takes as a reasonable measure of the prizes 100d,/(dys+dy;) and 100d,/(dy5+ dgs)
per cent. of the prize money. These are obtained from the last two rows of the table.

Table of Data for Two-Prize Ratios.

n= 3 10 50 100 1000
m 43074 | 128155 205375 | 232635 | 309040
108/ 1-560,6213 | 1-244,2739 | 26850071 | 24257300 | 327,081
m —43074 | 84162 175069 | 208375 | 287830
logy,’ | 1560,6213 | T447,0995 | 29353726 | 26850071 | 3801,9239
b1 833010% | 524952% | 380,908+ | 345,092t | 274009+
() 833910% | -249013% | 229,691+ | 198,170+ | 151,309+
o +°004736 | +031971 | +070,072 | +084161 | +-119,233
s +011633 | ~-005875 | -032,218 | -042,268 | — 066,330
e 2002065 |+000,204 | +002,068 | +-00L,656 | —00LS76
14¢,+63+c; | 10143 1-0263 10399 10435 10505
o +'004736 | +°007,686 | +027,170 | +035,035 | +055,246
o 4011633 |+002:355 | —'010,553 | —-016,108 | — 030,375
o Z.002,055 | ~000,327 | 4000443 | +000,517 | 000,170
Lo/ feg+ey | 10143 10097 10171 10194 10247
fo i 8458 5388 3969 - 3611 % 9879
Xols=d, 8458 3453 2965 2020 1551
dgflds+5) | 667 719 733 736 741
d(dg ) | 333 281 267 264 259

The results are in fairly close agreement with those obtained from Mr Galton’s investigation,
which puts the first and second individuals in the places they would hold if the sample of the
competitive population were actually arranged according to the normal law. His proposition
that if there be two prizes they should embrace 75 and 25 per cent. respectively of the prize
money is seen to be a sound rule for practical purposes when = is at all large, and might well 'be
impressed upon the powers that rule such distributions not only in the educational world, but in
rifle, athletic, sportifig and agricultural competitions.

(7) We may next consider how the divergencies between individual members of an array vary
when we take the pair close to one end of the array, or nearer to the centre. Let us suppose the
array to contain 100 individuals ; we already know the differences between the 1st and 2nd, and
the 2nd and 3rd individuals. We will now find the differences between the 25th and 26th and
the 50th and 51st. In other words we will determine x,;(100) and x;(100). We can easily
find these expressions in the more general case for » fairly large§ ; we have:

2506,628 ‘035,398  -012,327
Xpu(W)=28x n, (1 + 7: - n” ) ....................... (xxx)
and
3-146,865 072,942 -026,989
x*”(n) =8X n’ (1 + 1: - n’z ) ..................... (xxxi)

* Caleulated from (xxv).

+ Calculated from (xxvii).

1 Mr W. F. Sheppard sends me as the values for these constants deduced by quadratures -8594 and
*2018, which thus show that our method is sufficiently approximate.

§ i.e. using (xxvi).
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These will give the corrective terms in the brackets close enough, even if » be as small as 10,
The terms outside the brackets will need determining by (xxvii) instead of (xxvi) if n be less
than 30, say. We see that (xxx) gives us the average difference between the mediocre individuals
and (xxxi) the difference between two individuals at the quartile. Roughly the differences in the
two cases are as b to 6. But if we compare the extreme individuals’ difference for n=100, we
have
x1="3611x3s, x;="2020x3, xz="0316x35 x;="0251xs.

Thus the interval between extreme individuals is more than ten times the interval between
mediocre individuals.

Now, of course, the normal distribution in a general sort of way indicates that the differences
between modal, or what the biologists term ‘normal,’ individuals are very small. But Mr Galton’s
difference problem enables us for the first time to quantitatively appreciate how much wider the
differences are between the extreme (or biologists’ ‘abnormal’ individuals) and modal (or normal)
individuals. Now the range of a distribution being somewhat about 83, we see that extreme
individuals may be separated-by as much as  of the range, while modal individuals have only a
difference of y15th of the range, and even individuals at the quartile only a difference of z}yth of
the range, )

It is not possible to pass over the general bearing of such results on human relations. If we
define ‘individuality’ as difference in character between & man and his immediate compeers, we
see how immensely individuality is emphasised as we pass from the average or modal individuals
to the exceptional man. Differences in ability, in power to create, to discover, to rile men, do
not go by uniform stages. We know this by experience, but we see it here as a direct conse-
quence of statistical theory, flowing from a characteristic and familiar chance distribution. We
ought not to be surprised, as we frequently are, at the results of competitive examination, where
the difference in marks between the first men is so much greater than occurs between men
towards the middle of the list. In the same way the individuality of imbeciles and criminals at
the other end of the intellectual and moral scales receives its due statistical appreciation.

We stand in a better position to judge the pathological from the merely exceptional, mere
isolation no longer leads us to doubt the position of an extreme outlying error, observation or
individual ¥, ' ‘

In short Galton’s difference problem leads us to look upon samples of populations and even
on populations themselves, no longer as arrays of continuously varying individuals, but as
systems of discrete units. We see discontinuity in every sample and in every population. We
obtain & new and most valuable conception of a normal or standard population. It is one in
which each individual is separated from his immediate neighbours, when the whole is arranged
according to any character, by definite calculable intervals, - These intervals are, of course, the
average intervals which would be found by taking the mean of many such samples or populations,
but they are none the less of extreme suggestiveness. Just as the continuous representation by a
frequency curve is only an ideal representation of the observed facts, so we now reach an ideal
represeutation of the actual discontinusty in the given population. As in the case of many
physical investigations, so we find in statistical theory both continuous and discontinuous repre-
sentations of the phenomena equally important and equally valid within the legitimate limits of
interpretation.

(8) As a last illustration I propose to investigate the value of x when n=2, and p=1 We
easily find : ) . '
Vor’

* I propose on another occasion to consider the application of Galton’s problem to & new theory for
the rejection of outlying individuals.

m=0, Yu=
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and from (xxii)...(xxiv):
¢,=0, ¢;="017,699, ¢;=— 003,081,
x=8x1127,

Since ; the next term vanishes, I 'believe this result is probably true to the last figure. Anyhow
I think we may say that if the individuals be taken at random from & population, then the
probable value of the standard deviation of that population is nearly §§ of the difference between
the two individuals. Thus by averaging the differences between pairs of individuals taken at
random we can obtain fairly readily an appreciation of the standard deviation, i.e. the variability
of the general population. Further, if we take individuals, not quite at random, but from
correlated groups, e.g. pairs of brothers selected at random, the §#th of the average difference of
the pairs will be the standard deviation of the correlated groups, eg. a group of brethren ;
hence the degree of relationship between such correlated individuals may be determined. This is
only a suggestion of one of the many possible uses of Galton’s difference problem. It opens up,
indeed, many new methods of inquiry, the effectiveness of which, however, can only be tested by
their application in actual statistical practice. It must suffice for the present to have indicated
that this difference problem marks a new, and very probably a most important, departure in
statistical theory.

KARL PEARSON.
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