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ABSTRACT 

The ogive was invoked by Galton in 1874 as the visual embodiment of the method of ranks 

which he had designed to obviate the need to take actual measurements. Through the 

mediation of George Darwin, its analytical form was supplied by J W L Glaisher. By 1879, 

Donald McAlister had extended its domain to a distribution which was not normal, 

relabelled it the ‘curve of distribution’ and given its analytical form in Richard 

Pendlebury’s adjustment to Glaisher’s notation. 

 

 

Introduction 

Francis Galton (1822-1911) developed the method of ranks to overcome two problems with 

different sources and characters but a single solution. The first was the need to avoid taking a 

direct measurement where to do so would cause offence or social discomfort. In his days as a 

traveller-explorer in South West Africa he had come across precisely this situation. The second 

was his interest in discovering the magnitude of a person’s intelligence where no metric had 

ever been established. The key to both problems was to use an ordinal or rank as a surrogate 

when whatever was being ‘measured’ had been sorted by size. Ranks provided relative 

measurement in lieu of absolute measurement, as Galton explained to an audience at the Royal 

Institution at a Friday evening discourse on 27 February 1874. The record of his talk on the 

making of the English scientist (more correctly, the British scientist) was given in 

complementary articles in the next issue of Nature. These articles took the form of a letter from 

Galton to the editor, Joseph Norman Lockyer (1836-1920), ‘On a Proposed Statistical Scale’ 

and an anonymous account of the lecture, entitled ‘Men of Science, Their Nature and Their 

Nurture’, written in the third person.1  The crux of the approach was to bind the ranks to the 

theoretical law of error (what we now term the normal distribution) on the assumption that 

many phenomena are modelled by such a curve. But the audience was largely ignorant of 

Quetelet’s use of the curve in anthropometry and Galton’s use of it in Hereditary Genius to 

describe the distribution of abilities.2 Galton justified his use of the law of error using a 

quincunx of his own design but had not yet thought to graph the cumulative function.  

 

 

A primary influence: Quetelet’s use of cumulatives 

 

In the years leading up to the first use of the ogive, Galton had become thoroughly familiar with 

the statistical writings of Adolphe Quetelet (1796-1874). In particular, he had studied the 

Belgian’s Lettres (1846) in which ‘curves’ had been fitted to data on the chest girths of Scots 

militiamen and the heights of French conscripts.3 Galton had found here the use of both 

cumulatives and ranks, and so it proved a primary reference for Galton as he developed the 

concept of the ogive. 4 

 

Stephen Stigler has given a most detailed account of Queletet’s curve-fitting process in his 

History of Statistics.5 It appears that for pedagogical reasons Quetelet had chosen to fit a 

discrete binomial (albeit of very large n) rather than a continuous normal, though the 

consonance between the resulting ligne brisée and the smooth, idealised courbe de possibilité 

was near perfect. In the construction of the table of values, Quetelet had moved from observed 

frequencies to relative frequencies, then to cumulative relative frequencies and finally to ranks. 

After realigning the ranks so that they had a linear scale, he had reversed the whole procedure 
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to arrive at the fitted frequencies.6 But though cumulatives and ranks had both featured, 

Quetelet had not drawn a cumulative frequency curve or polygon (to use more modern terms). 

 

 

Galton’s early use of the ogive 
 

1. The measurement-avoidance ogive (1874) 

 

The reception given to Galton’s Royal Institution talk was mixed, with some of the harshest 

criticism coming from John Morley (1838-1923), then the editor of the Spectator, later as Chief 

Secretary for Ireland, a leading politician in Gladstone’s third and fourth administrations. 

Galton’s approach, Morley concluded: 

will never take hold on the world, because it is wholly and intrinsically inapplicable to the 

purposes for which he recommends it. But if ever it did attain an unfortunate notoriety, we 

suspect it would be much more likely to be called the scale of Sham Science, than by the 

name by which its inventor has proposed to christen it.7 

Galton accepted that he needed to bring his ideas before a wider audience and over the coming 

months he mixed simple reiteration with exemplification, culminating in the paper on which 

later historians concentrate almost exclusively, ‘Statistics by Intercomparison’. An early 

opportunity arose through Galton’s committee work for the British Association for the 

Advancement of Science. In 1874, he joined other members of the association’s General 

Committee to produce advice to travellers and explorers.8 Despite the fact that Karl Pearson 

(1857-1936) drew attention to this publication in his biography of Galton, later historians do 

not discuss it.  

 

Galton prefaced the main section of his short article by restating the error theorists’ 

justifications for the ‘law of deviation’, including an appeal to symmetry, the homogeneity of 

populations and the plethora of tiny, independent influences.9 Then he took his first, tentative 

steps towards the use of ranks, taking the example of there being a thousand of them and 

drawing attention to the 500th rank, or c, which he referred to, simply, as the average. The only 

significance of the particular label chosen is that C was used to indicate the position of the 

middle rank, the extreme ranks having already been labelled A and B. The accompanying graph 

shows a double vertical line at the 500th rank, as if Galton were acknowledging that he was 

using an even number of data.  

 
Figure 11.1:  The original ogive, depicting the ordered heights of a thousand men 

 

Galton also noted the 250th and 750th ranks, labelled D and E, to which he gave no special name. 

Neither did he give a name to r, the difference in the height at C and D. He did note that if the 

ranks represent men whose heights are the trait under consideration, then the heights of the 90th 

tallest and the 910th tallest men are respectively 2c r  and 2c r ; likewise, the heights of the 

20th tallest and 980th tallest men are respectively 3c r  and 3c r . Pearson observed that 
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‘Galton was proceeding gradually, and the dose was a very small and simple one’.10 It was the 

‘weakness of his brethren’ that demanded they be fed only ‘homeopathic doses’.11  

 

It is interesting that Galton did not proceed from rank to measurement but from measurement 

to rank. This may have been didactic or it may have indicated his reluctance to throw off the 

mantle of error theory. The former is the more likely, though Galton did refer the novice to 

Layton’s translation of Quetelet’s Lettres for further explanation.  

 

It has been suggested by Eliot Slater that the ogive held a special appeal for Galton because his 

concern was with the extremes of the normal distribution. Graphically, the extremes of the 

normal curve (i.e., the curve of the density function) have little effect on the eye of the beholder, 

whilst the area of mediocrity bulges impressively. Slater observed that it is exactly the opposite 

in the ogive, which ‘runs almost level over the middle part of its course, but dips or rises with 

increasing steepness towards either extreme’.12 Here mediocrity is aligned with a small 

gradient, the visual drama being in the tails. This was not without consequence, for as Slater 

argued: 

The man at the extreme right would exceed his neighbour to the left by a larger margin 

that the man would exceed his other neighbour. This led Galton to the misleading idea that 

there was more variation at the extremes of the distribution than about its middle. The 

correct view is that variability is a quality of the group as a whole, but that its effects will 

be more openly manifested than near the mode.13 

 

 

2. The ogive as empirical and theoretical model (1875) 

As already mentioned, Galton brought together all his ideas on indirect measurement in the 

autumn of 1874 in the paper ‘Statistics by Intercomparison’.14 Published in the Philosophical 

Magazine the following January, it presented ‘a more complete explanation and a considerable 

development of previous views’.15 Galton explained once more how it is possible to ‘dispense 

with standards of reference … being able to create and afterwards indirectly to define them’.16 

It is possible ‘to replace the ordinary process of obtaining statistics by another, much simpler 

in conception, more convenient in other cases, and of much wider applicability’.17 The key to 

the new method was the ability of individuals to ascertain which of two objects possesses to 

the larger extent the quality under investigation. By making a series of such binary judgements 

the objects can be put in series. Galton did not allude to Gustav Fechner (1801-1887) but the 

nature of the exercise is not unlike the discrimination tasks of the psychophysicists. 

 

Two populations can be compared by examining their means and ‘probable errors’, as 

determined from the ‘first and third quarter points’.18 Galton expressed a preference 

to reckon the divergencies in excess separately from those in deficiency. They cannot be 

the same unless the series is symmetrical, which experience shows me to be very rarely 

the case. 

This remark stands in stark contrast to the view often expressed of the universality of the law 

of frequency of error, and is contradicted forcefully later in the same paper. It certainly 

recognizes the potential usefulness of such a representation even where no symmetry exists. 

The magnitudes of the quality under consideration can be arranged on an evenly spaced base 

and a ‘curve of double curvature’ drawn through their tops.19 Galton noted that ‘such a curve is 

called, in the phraseology of architects, an “ogive”’.20 He labelled the ogive in his diagram with 

the onomatopoeic OG, marked the ordinates of the quarter points p, m and q and noted that fine 

discrimination is required only when sorting objects near to these three stations.21  
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Figure 11.2:  Galton’s ogive with the quarter points marked 

 

Galton used the ogive as both an empirical model and a theoretical model. When using it as an 

empirical model he made no assumption that the data are distributed according to the law of 

frequency of error. The data determine the ogive’s parameters and the term ‘ogive’ is adopted 

regardless of symmetry. So the objects at the quarter points on the horizontal axis of relative 

frequency can be identified and the values of m, p and q can be estimated from the scale of 

magnitude on the vertical axis of the empirical ogive. These stations constitute ‘permanent 

standards of reference’ or benchmarks against which a comparable set of data may be judged, 

either now or in the future.22 

 

As to the theoretical model, it is underpinned by an assumption that the data do, indeed, conform 

to the law of frequency of error. The ogive is fixed by the ‘mean’ and one other quarter point. 

With a regular arithmetical graduation on the horizontal axis, the scale on the vertical axis is 

automatically graduated in units of q – m, the probable error.23 This allows a reversal of the 

usual argument, from a simple proportion or relative frequency to a measurement expressed in 

terms of the probable error, rather than from a measurement to a relative frequency. 

 

Galton believed the assumptions on which the law of frequency of error had traditionally rested 

to be unduly stringent. In particular, the number of causes or influences affecting a phenomenon 

is often not very large and yet the theoretical model is postulated on its being infinite. Further, 

the law of frequency of error is an idealization of an underlying binomial law in which the 

number of influences that determine a character is simply the degree of the binomial expansion. 

Galton believed that number to be relatively small.  

 

 

Figure 11.3:  Galton’s comparison of binomial ogives of 17 and 999 elements 
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He set about demonstrating it by comparing the ‘binomial ogive of 17 equal elements’ to the 

ogive of Quetelet’s binomial of degree 999 (known to be almost identical with the law of 

frequency of error). He superimposed the latter onto the former by bringing together the means 

and stretching the ‘Quetelet ogive’ until the quarter points of the two curves also coincided.24 

Galton commented that the ‘closeness of the resemblance is striking’, and noted that it is 

difficult to separate the two visually when the power is as high as 30.25 

 

The preliminaries complete, Galton offered a plausible argument that the law of frequency of 

error is self-referencing. In other words, a combination of binomial laws produces a law which 

differs little from another binomial or, equivalently, for characters with a moderate to large 

number of influences, a combination of laws of frequency of error differs little from another 

law of frequency of error. 

 
3. The comparison ogive (1875-76) 

In much the same period, Galton had also begun research into the growth of the human form, 

now referred to as ‘auxology’.26 He had approached the Anthropological Institute in 1874 with 

a proposal to gather anthropometric data on boys from a range of ‘Public Schools, middle class 

schools and others, down to those of pauper children’.27 The first two schools to respond were 

Marlborough School and Liverpool College, but ‘the statistics came out very differently, so that 

it would have been impossible to combine them’ and only the Marlborough data and their 

analysis were published initially.28 Galton must have suspected that the disparity between the 

two sets of data reflected the fact that one was a rural school, the other located in a city. 

Certainly, by the time he had received returns from nine schools (all public schools) he had 

decided to undertake a comparative study of physical development at schools in rural and urban 

locations. Galton made public this larger set of data at a meeting of the Anthropological Institute 

in the spring of 1875 and his analysis was carried by its journal the following year.29  

 

The statistics of only eight of the schools were used in the main part of the study, four town 

schools, four country schools.30 In total a little fewer than 4000 boys were measured.31 One 

criterion Galton insisted upon was that the number of boys in the town and country categories 

be roughly the same. With many boys leaving the town schools before their sixteenth birthdays 

the best balance existed for 14-year olds. This reduced the number of boys’ measurements to a 

rather ‘scanty’ 296 country boys and 509 town boys.32  

 

It was only fourteen months since Galton had unveiled his new method of ranking data and he 

took the opportunity to illustrate it once more.33 For four data sets, heights and weights of 

country boys and heights and weights of town boys, the observed frequencies were reduced to 

‘per centages’ and then summed and tabulated.34 It was plain to Galton that the ‘curves of height 

(of course, not those of weight) conform fairly to the Law of Error’.35 The weight statistics were 

put aside. 

 

The summed percentages for height were graphed to produce two ogives or ‘curves of contrary 

flexure’, one each for the country and town schools.36 The distribution of heights was 

summarised by the lengths of five ordinates or vertical ‘rods’: the ‘middle ordinate’, together 

with ordinates one and two probable errors either side of that average, i.e., at the 8th, 25th, 75th 

and 92nd divisions. Galton commented that to measure any other ordinates would be a 

‘misdirection of labour’, such is the form of the law of errors. He directed readers to the methods 

of Quetelet’s Anthropométrie, published in 1870, for comparison with his own and quoted the 

average height of Belgian 14-year olds as given by Quetelet .37 
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Figure 11.4:  Comparison of the distribution of heights of 14-year old boys 

[upper ogive (urban schools), lower ogive (rural schools)] 

 

From his study Galton noted that the boys at the country schools were on average 1¼ inches 

taller and 7 lbs heavier. He concluded that the ‘difference in height is due, in about equal 

degrees, to retardation and to total suppression of growth’, disregarding the possibility that the 

social classes of English society were represented in different proportions in the two groups. 

When Karl Pearson reviewed Galton’s papers, he noted that the boys of Clifton, Eton, 

Haileybury, Marlborough and Wellington were of the professional and administrative classes. 

The boys of Christ’s Hospital, City of London School, King Edward’s Birmingham and 

Liverpool College belonged to a different social grouping, being the sons of shopkeepers and 

clerks. Pearson therefore argued that Galton, without fully recognising it, confounded 

demographic factors (town versus country) and social factors.38 

 

 
Glaisher on the analytical form of the error function 

Over the winter of 1874-75, George Darwin (1845-1912) cast a mathematician’s eye over 

Galton’s ogive, but in this he was joined by his colleague and friend at Trinity College 

Cambridge, James Whitbread Lee Glaisher (1848-1928). It was Glaisher who explained how 

the ogive could be expressed in the form of a mathematical function. In fact, he provided two 

such forms.  

 

Galton and Glaisher were first introduced in the late autumn of 1874. The encounter was brief, 

though long enough to leave Galton with a most favourable impression. If Galton and Glaisher 

had time for more than the usual pleasantries, then their common interest in the error function 

may well have been discussed, however dissimilar the sources of that interest. Galton and 

Glaisher’s father, James Glaisher (1809-1903) shared an interest in the error function as used 

in instrument calibration, but the son was interested in it purely as an analytical function. 

 

Meanwhile, Galton wrote to Darwin on Christmas Day, 1874: 

 
As regards that “ogive” of which we were talking, I was stupid & explained myself ill,  

 

& boggled. In the ordinary                        x is the magnitude & y the frequency.  

 

In my plan, y is the magnitude & x the sum of the frequencies, the frequencies being taken 

from the 

2

2

x

ce


 tables & the sum of the frequencies from the tables of the integration 
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of it. viz Tables I & II respectively of the usual publications (? II & III in the 

Encycl[opædia] Metropolitana).39 

 
It appears that Darwin had not initially appreciated that Galton’s ogive was an inverse 

function.40 The independent variable is y and is shown graphically on the horizontal axis. This 

variable is under control, its values taken at fixed intervals. The cumulative frequencies 

constitute the dependent variable, and on the assumption that the character under consideration 

is distributed according to the error function, its values can be looked up in tables. If Galton 

had asked him to find a formula for the ogive, as seems likely from Darwin’s reply, such an 

appreciation would have been essential.  

 

As we have seen, Galton’s paper, ‘Statistics by Intercomparison’, was published at the turn of 

1875, some ten months after his lecture at the Royal Institution on the subject of ranking 

methods.41 Darwin wrote to Galton on 4 January 1875 immediately upon reading it and about 

a week after receiving Galton’s letter.42 

You talk of filling in y[ou]r ‘ogives’ with free hand; I suppose you know those ‘French 

curves’ which enable you to draw in curves thro’ any number of points very neatly.  

One can obtain the Equation to y[ou]r binomial curves in terms of what we call  

functions; i.e. (n + 1) = 1.2…..n when n is integral, but it can’t be expressed algebraically 

when n is fractional: The equation to this Expon[entia]l Ogive is 
2

2

y m
y

c

m

n
x a e dy

 
 
     

where m, n, x, y have y[ou]r meaning, c is the modulus & (a) some const[ant]. At least I 

think this is so. 

I do not see any def[initio]n of ‘grade’ in so many words & it took me a few minutes 

before I saw what you meant.
 

 

It w[oul]d be well not to speak of the                   as a curve of ‘double’ curv[atur]e, as 

that term is already occupied to mean a curve with torsion and flexure e.g. a helix but a 

curve of contrary curv[atur]e or with a p[oin]t of contrary reflexure. You w[oul]d of course 

be aware of the distinction. 

 
In response, Galton wrote, ‘thank you much for the Equation to the ogive’ and acknowledged 

that ‘curve of double curvature was a sad slip for curve of contrary flexure’.43  

 

Darwin was an accomplished young mathematician, but his familiarity with the mathematics 

of the error function and related functions could not rival that of Glaisher, one of the leading 

authorities on the subject. In contrast to the support Darwin provided to his own father and his 

cousin in his early career, which may be interpreted as largely familial, Glaisher’s long career 

was characterised by selfless and magnanimous support for his scientific colleagues. If Galton 

required help, and whether approached directly or by Darwin on Galton’s behalf, that help 

would have been forthcoming. 

 

James Whitbread Lee Glaisher was known in the family as Lee and in the scientific community 

by his initial letters.44 As a youth, he acted as a guinea-pig on two of his father’s balloon flights, 

the first to a height of over 14,000 feet. He was monitored for changes in colour, pulse and 

breathing rate, with increasing altitude.45  Glaisher was educated at Trinity College, Cambridge 

and graduated as Second Wrangler in 1871. Such success in the Mathematical Tripos assured 

him of a college fellowship and thus began his lifelong affiliation with Trinity College. He had 

been lecturing at Cambridge for over two years when Darwin returned there in October 1873. 

 

Half a century later, when it fell to the second Sadleirian Professor at Oxford, Andrew Forsyth 

(1858-1942), to pay tribute to Glaisher, he portrayed him as no great pioneer but, rather a spur 

to others.46 Forsyth focused on Glaisher’s lengthy service on the council of the London 

Mathematical Society and as the editor of two journals for mathematicians over a fifty year 
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period, the Quarterly Journal of Pure and Applied Mathematics and the Messenger of 

Mathematics. He believed that Glaisher’s greatest legacy as a mathematician was related to the 

calculation of mathematical tables. Glaisher was certainly the leading authority of his day on 

tables of the error function and their history, and an accomplished error theorist in his own 

right.47 It was his special knowledge of error theory in his early years at Trinity College, 

Cambridge which helped Galton to better understand the mathematics of the ogive. Darwin 

may have acted as prompt and intermediary but it was from Glaisher that Galton learnt of the 

ogive’s functional form.   

 

Glaisher was still a student when his first paper was communicated to the Royal Society by 

Arthur Cayley.48 In it he argued that there are numerous functions that cannot be integrated 

analytically and neither is it convenient to resort to numerical methods. However, if such 

functions can be expressed in terms of ‘fundamental’ functions already evaluated numerically, 

then they too can be evaluated. He noted that ‘one function, … the integral 
2

x

x
e dx




 , well 

known for its use in physics, is so obviously suitable for the purpose, that, with the exception 

of receiving a name and a fixed notation, it may be said to have already become primary’.49  

 

In the first part of the paper, Glaisher called the function the ‘Error-function’, labelled it Erf x, 

and then expressed some two dozen results in terms of it. In the second part, he noted that, 

expressed in the notation of Legendre, Erf x is the gamma function  
2

1 1
2 2

,
x

e


  .50 It was in a 

similar gamma function form that Darwin expressed the ogive in his letter of 4 January 1875 to 

Galton, adding the codicil that he only thought he had the correct form. It is unlikely that he 

was able to consult Glaisher directly in those days around the New Year, when Trinity College 

was not in session. But it is clear that he was aware of Glaisher’s paper and capable of adjusting 

the gamma function so that the abscissae are expressed in terms of the ordinates, i.e. x in terms 

of y. 

 

Also in the second part of the paper, Glaisher defined the ‘Error-function-complement’ Erfc x, 

to be Erfc x = 
2

0

x
u

e du


 , where Erf x + Erfc x = 1
2

  , depending on the sign of x.51 A further 

thirty identities were then deduced. And the pure mathematics of the two related functions 

having been explored, Glaisher turned to the applications of Erf x to physics and to the various 

mathematical tables of the function which had been produced. He explored Kramp’s application 

of the error function to refraction, dissecting his methods of calculation as he went.52 He also 

expressed, in terms of Erf x, Fourier’s function for the conduction of heat in a metal bar and 

noted William Thomson’s use of it to estimate the age of the earth.  

 

Kramp had previously provided tables of Erf x for 0.00 (0.01) 1.24, to between 7 and 11 decimal 

places, together with tables of 
10

log Erf x  and  
2

10
log Erf

x
e x , each for 0.00 (0.01) 3.00, to 7 

decimal places. Subsequently, they had been corrected and supplemented by Bessel, Legendre, 

Encke and De Morgan.53 Glaisher extended the range of the tables of Erf x, providing values of 

the function for 3.00 (0.01) 3.50, to 11 decimal places; for 3.50 (0.01) 4.00, to 13 decimal 

places; and for 4.00 (0.01) 4.50, to 14 decimal places.54 So that accurate values of Erfc x could 

easily be calculated from them, he also gave the value of 1
2

  to 14 decimal places. 

 

Immediately following the publication of the first part of Glaisher’s paper, Richard Pendlebury 

(1847-1902) of St John’s College, Cambridge, also perceived the need to have a notation for 
2

0

x
x

e dx


  and proposed erf x.55 In a paper of 1875, Glaisher chose instead to interchange his 
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original definitions of the error function and its complement, using Erf x = 
2

0

x
x

e dx


 and Erfc x 

= 
2

x

x
e dx




 .56 

 

Following a request for information either made directly by Galton or, more likely, indirectly 

via Darwin, Glaisher wrote to Galton on the subject of ogives.57 As Galton explained to Darwin 

I got a letter from Glaisher a short time back about my “exponential ogive” whereof he 

much approves, name and all, and he gives me a compact expression for it, in terms of his 

“Error function”. I enclose a copy of part of what he says.58 

Galton had transcribed Glaisher’s explanation and attached it to his letter.59 It reads: 

In the ordinary theory,  being the distance of the greatest ordinate from the origin, the 

chance of an error lying between x and x + dx is 
 

22
h xh

e dx
 




 which is of course the curve 

usually drawn 

 

while the curve that you draw in place of this is 
 

22y
h yh

x e dy
 





  which may also be  

written  
1

Erf
2

x h y
  

   
   

   

or  
1

Erfcx h y 


  and is like this 

 

 

[Erf x is written for 
2

0

x
x

e dx


 , Erfc x = 
2

x

x
e dx




 , 

so that Erf x + Erfc x =
2


.] 

 

 

 

If we put x = ½ we have Erf h(-y) = 0 so that y =  and AP is as you say the ‘average’. Put 

x = ¼, we have Erf h(-y) = 
4


 and h(-y) =  so that y

h
 


   ( = .4769) and, as you 

say, PQ' = the probable error. 

 
Galton was clearly unaware of Glaisher’s papers in which the two complementary functions 

are used extensively. They include no graphs but Glaisher had made the connection. The 

definitions of Erf x and Erfc x are here juxtaposed, compared with the original definitions. 

Glaisher later explained the reasons for the switch:60  

This notation … was not well chosen, for it is the latter integral that occurs in the theory of 

errors, viz. The chance of an error not exceeding x is 
2

0

2 x
t

e dt



 . Soon afterwards, 

therefore, I interchanged the functional symbols, putting Erf x = 
2

0

2 x
t

e dt



  and Erfc x 

22 t

x
e dt






  and this notation I used in subsequent papers.  
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The letter also revealed to George Darwin that Galton and Glaisher had attempted to tabulate 

the ogive. Galton wrote that: 

it occurred to me that it would be uncommonly convenient to calculate an ‘exponential 

ogive’ table, which I did, and since receiving Glaisher’s letter I sent it to him to see if he 

c[oul]d get it properly recalculated for me directly from his formula. You see, by knowing 

any two ordinates, you know the whole curve & can at once get the value of any other 

ordinate in it. I need not bother with particulars about the table, further than that it gives 

ordinates from 1 to 50 in an ogive of 100 places, from 1 to 50 in an ogive of 1000 places 

— ditto 10,000, 100,000 & a million. So that all goes into a page.61 

 

In fact, Galton intimated four months later (in May 1876), the Galton-Glaisher tables would be 

made available in a joint publication: 

Glaisher & I are going to send in a joint paper about that ogive “Exponic Ogive” we are 

going to call it. He has calculated tables de novo & we have got them into a most handy 

form for reference. I really think many future statisticians will be grateful for them. For by 

them, given any two magnitudes in a “statistical series” of any (given) number of things, 

whose places in that series are known, you find by the simplest rule-of-three arithmetic, 

both the mean & the modulus.62 

Yet, in a paper of 1908, Glaisher gave a comprehensive listing of tables of the error function 

and related integrals but made no mention of any tables produced by him in the late 1870s in 

connection with Galton.63 The proposed tables were never published, possibly because of their 

limited scope.  

 

 

McAlister’s ‘curve of distribution’ 

In 1879, Galton approached a young mathematician, Donald McAlister (1854-1934), to find 

the function having the same relationship to the geometric mean as the law of frequency of 

errors has to the arithmetic mean.64 In his autobiography, he wrote: 

I have received much help at various times from Mathematical friends. On one occasion, 

being impressed with the probability (owing to Weber’s and Fechner’s Laws) that the true 

mean value of the qualities with which I dealt would be the Geometric and not the 

Arithmetic Mean, I asked Mr. Donald Macalister … to work out the results. 65 

 
Galton had attacked the problem himself in the summer of 1877 and had reached a result which 

‘seems to come out very prettily & simply’. His intention had been to send it to Nature, but 

wishing ‘to be assured that it is correct’ had asked George Darwin’s opinion.66 The advice he 

received was such that Galton told Darwin three weeks later that ‘I rewrote the thing I sent you 

& have simply docketted it & laid it by for some future use’.67 This suggests that Darwin had 

cast aspersions on the original analysis and that Galton had been unable to proceed along the 

lines suggested. It is likely that Darwin had been unwilling to spend time on it.68 

 

McAlister was a ‘vigorous mathematician’, according to Galton, and this was borne out by his 

record as an undergraduate.69 He read mathematics at St. John’s College, Cambridge from 1873, 

arriving to take up his studies just as George Darwin returned to Trinity College. Glaisher was 

already a tutor at Trinity College, the immediate geographic neighbour of St John’s. McAlister 

graduated as Senior Wrangler and First Smith’s Prizeman in January 1877. He later pursued a 

brilliant career as a doctor and administrator, presiding over the General Medical Council for 

27 years (1904-1931).70  

 

Prior to approaching McAlister with his mathematical challenge, Galton had met him socially, 

almost certainly through his wife’s brother, the Headmaster of Harrow School, Henry Montagu 

Butler (1833-1918). Once McAlister had completed his analysis, Galton sent two papers to 

George Gabriel Stokes (1819-1903), as Secretary of the Royal Society, with the intention that 

they should be published together. The first was a short introductory paper ‘The Geometric 
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Mean, in Vital and Social Statistics’, in which Galton outlined the remit he had given McAlister; 

the second was McAlister’s paper, ‘The Law of the Geometric Mean’.71 A short correspondence 

ensued between Galton and Stokes following the papers’ arrival. From one such letter from 

Galton it can be seen that Stokes was keen to learn of suitable domains of application for this 

mathematics: 

About MacAlister’s paper; it might be well to look at the marked passages in the enclosed 

letters from him, sent to me a few days back … 

       The principal people who have used the law of error for vital statistics, since Quételet, 

are the compilers of the War department Statistics of the N. American Forces after the war 

between the N. and S. States. And again, curiously enough, Fechner himself in his 

Psychophysik (I, 108) introduces a long mathematical investigation by his mathematical 

colleague (I have lent the book and forget his name) wherein a series of law of error tables, 

‘Methoden der richtigen und falshen Fälle,’ are formed to help him in his own 

investigations. In short, he ignores his own law! He uses tables on the Arithmetic Mean 

principle to discuss results of observations on phenomena that have the Geometric Mean 

condition. So the question treated in the paper is really one of importance to statisticians.72 

 

The two papers were subsequently read by Galton at the Royal Society on 20 November 1879. 

A second version of McAlister’s paper was published in 1881 in the Quarterly Journal of Pure 

and Applied Mathematics in the style of its editor, Glaisher.73 This full, mathematical version 

— in which there is a reference to the former version as a mere ‘abstract’ — has been largely 

ignored by historians.74 The first version relies on the geometric or visual, and is essentially in 

the style of Galton, the second on the analytical and very reminiscent of Glaisher’s papers. 

 

The context for McAlister’s papers is to be found in Galton’s introductory paper. Here he 

rejected the notion that the errors deemed equally likely either side of the true value by error 

theorists can be adopted in vital and social statistics.75 From Fechner’s experimental studies of 

the lower mental faculties it was plain that equal intervals were defined by taking ratios rather 

than differences, and hence the true central value was the geometric mean rather than the 

arithmetic mean of the observations.76 He not only alluded to the psychophysical studies of the 

senses but also sought to extend the range of applications to the growth of money, business and 

population.77 

 

Both versions of McAlister’s paper contain two fundamental results. Firstly, the analogue of 

the law of frequency of error is the ‘law of facility’, given by the curve  
22

log

π

h xh
y e

x


 , 

where h is a measure of dispersion termed the ‘modulus of precision’ or ‘weight’.78 Secondly, 

if x and y obey the law of facility, with moduli of precision 
1

h  and 
2

h  respectively, then z xy  

obeys the law of facility, with modulus of precision h, where 
2 2 2

1 2

1 1 1

h h h
  .  

 

Throughout the two papers, the discussion is related closely to Galton’s ‘Statistics by 

Intercomparison’, whilst extending not just the mathematics but the nomenclature. And 

amongst that terminology is a new name for the ogive, the ‘curve of distribution’:  

Another method of exhibiting the law, suggested by Mr. Galton’s Method of 

Intercomparison, is the following. Let the series of measures be represented by a series of 

ordinates: arrange these side by side at equal small distances and in order of magnitude. 

Their extremities will then lie on a curve of contrary flexure, which Mr. Galton calls an 

Ogive; we may speak of it as the ‘curve of distribution’.79 

 

Galton did not use the term ‘curve of distribution’, either in a paper on mental imagery of 1880 

or in his Inquiries into Human Faculty of 1883, both of which contained discussion of such 

curves.80 It is likely, therefore, that McAlister and not Galton, coined the term ‘curve of 

distribution’ and Galton retained a preference for his own ‘ogive’. 
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It is in the first version of the paper that graphs of the law of facility are shown, including the 

asymmetrical (lognormal) distribution curve: 
 

 

Figure 11.5:  McAlister’s ‘curve of distribution’ 

 

McAlister gave its analytical form as  
2log

0
erf . log

h y
t

h x e dt h y


  .81 This is not Glaisher’s 

notation — he always used ‘Erf’, rather than ‘erf’ — but Pendlebury’s adjustment to it.82 

Pendlebury had been a Fellow at St. John’s College since graduating there as Senior Wrangler 

in 1870, and was one of McAlister’s teachers.83 For Glaisher’s own journal, The Quarterly 

Journal of Pure and Applied Mathematics, McAlister diplomatically switched to the editor’s 

notation and invoked his name in the phrase, ‘Mr. Glaisher writes it  logh x Erf h y ’.84 

 

 

Conclusion 

The originality of the ogive was Galton’s alone. There were some small ways in which 

Darwin’s influence was felt directly on Galton — offering advice on terminology, for example 

— and he acted as a sounding board throughout, but it was through his contacts that Darwin’s 

influence was brought to bear. From Glaisher, who was steeped in the mathematics of the ogive, 

George Darwin learnt of the curve’s analytical form and of the ‘erf’ designation and this he 

intimated to Galton. The designation was promoted through Glaisher’s journals and by way of 

Pendlebury, a contributor to one of those journals, it also became known to McAlister. He 

adopted it for the little-discussed, mathematical version of his paper on the law of facility, an 

analogue of the law of frequency in which the geometric mean is the measure of central 

tendency. 
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